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Workshop Materials

* Handouts
— A hard copy of slides

— A hard copy of AuvTool’s user guide and
technical report

— A hard copy of the paper about mixture
distributions submitted to Risk Analysis

« CDdisk
— AuvTool 98/ME version installation package
— AuvTool 2000/XP version installation package
— A PDF file of AuvTool’s user guide
— A PDF file of AuvTool’s technical report
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Agenda and Schedule

1.00 - 1.05 Welcome and Introduction Materials

1:05-1:35 Quantification of Variability

1:35-2:30 Quantification of Uncertainty in a Single Component Distribution
2:30- 3:.00 Introduction to AuvTool, Installation and its Use

3:.00-3:15 Break

3:15- 345 Censored Data

3:45 - 4:15 Mixture Distributions

4:15- 445 Measurement Error

4:45-5:.00 Summarization, Discussion and Evaluation

5:00 - 6:00 (Optional) |Demonstration of AuvTool and Questions

NC STATE UNIVERSITY

Outline

* Introduction
*  Quantification of variability

*  Quantification of uncertainty in a single component
distribution

. Introduction to AuvTool

* Quantification of variability and uncertainty in censored
datasets

»  Characterization of variability and uncertainty based
upon mixture distributions

*  Characterization of variability and uncertainty with
known measurement error
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Introduction

* Limitations of qualitative or deterministic
methods

* Increasing demand for quantitative analysis of
variability and uncertainty in risk assessment,
exposure assessment and emission
estimation

NC STATE UNIVERSITY

Variability & Uncertainty

* Variability
—Heterogeneity of values with respect to time,
space, or a population
—e.g, variation in feedstock or compositions; inter-
plant variability in design, operation, and
maintenance; and intra-plant variability
» Uncertainty
—lack of knowledge regarding the true value of a
guantity
—e.g, statistical sampling error, measurement
errors, and systematic errors
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Instructional Objectives

» To identify general approaches for fitting distributions to data

» To describe and compare parameter estimation methods

* To briefly describe, and compare selected goodness-of-fit
techniques

» To describe, calculate, and characterize confidence intervals for
statistics

» To describe bootstrap simulation and apply it to characterize
confidence intervals for fitted distributions

* To introduce two-dimensional Monte Carlo simulation for
simultaneously characterizing variability and uncertainty

» To deal with special cases such as censored datasets,mixtures,
and measurement error

NC STATE UNIVERSITY

Fitting Distributions to Data Sets

» Empirical (Non-Parametric) Approaches
» Parametric Approaches
—Selection of parametric distributions
—Selection of parameter estimation methods
» Evaluation of Goodness-of-Fit
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Key Assumptions
in Fitting Distributions to Data

 Random Sample

» Representative Sample

NC STATE UNIVERSITY

Statistical Estimation

* Inferences are made from samples of data
regarding the characteristics of the population
from which the data are a sample

» A “statistic” is a quantity that is estimated as a
function of a random sample of data
» Examples of statistics include:
—moments or central moments
—percentiles or fractiles
—parameters of distributions
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Mean

* Mean (also Arithmetic Average, Average,
Expected Value)

 For a continuous distribution:
E(x) = / X f(x) dx
* For a data set: N
E(X) =S xipi
» For equally weighted data:

. iI=$1Xi

X=—m—

NC STATE UNIVERSITY

Comparison of
Mean, Median, and Mode

Mean
Median
Mode

|

.

(a) Symmetric Distribution

(b) Asymmetric Distribution




H. Christopher Frey and Junyu Zheng Annual Meeting Workshop
North Carolina Sate University December 2002 of the Society for Risk Analysis

NC STATE UNIVERSITY

Variance

» Variance is the second central moment with
respect to the mean:

s2= @:E[x—m]zzl(x—ml)zf(x) dx
» The variance may be estimated from a data
set as follows:

NC STATE UNIVERSITY

Coefficient of Variation

* The coefficient of variation is the standard
deviation divided by the mean:

- S
N=m

» Also referred to as “relative standard deviation”

* Non-dimensional indication of the relative
dispersion or width of a distribution
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Third Central Moment
and Skewness

» The third central moment is the basis for
estimating skewness

* The third central moment is:
my :E[X—”1]3 :/(X—nl)?’f(x) dx
* The third central moment may be estimated as

i:Sl %-R’
« The skewness is given by: > T
_ I8
01= S3

NC STATE UNIVERSITY

Fourth Central Moment
and Kurtosis

» Kurtosis is a measure of the “peakedness” or
flatness of a distribution

 Larger kurtosis implies “pointier peaks”

 Kurtosis is based upon the fourth central
moment: n‘h:E[X—nl]4:]Q<—n‘i)4f(X) dx

» The fourth central moment may be estimated by

e
—i=1
« Kurtosis is defined as: Ma=
fo M
(n,t\z 4

(7]
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Selecting a Parametric Distribution to Fit
to a Data Set

» The skewness and kurtosis of a data set can
be used to help select a parametric distribution
with similar shape

» This is an empirical approach to selecting a
parametric distribution

» This approach may not be the most
appropriate one to use

» Physical constraints and processes that
generate data and distributions should also be
considered

NC STATE UNIVERSITY

Empirical Basis for Selecting a
Parametric Distribution: Moment Plane

Impossible Region

Kurtosis, by

Square of Skewness, bq
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Theoretic or Practical Basis for
Common Parametric Distributions

— Normal Distribution: Asymptotic for central limit theorem for sums.
Useful for random measurement errors and physical quantities
when coefficient of variation is small

— Lognormal Distribution: Asymptotic for central limit theorem for
products. Mixing processes. Useful for non-negative quantities
that vary by orders-of-magnitude

— Weibull, Gamma: alternatives to Lognormal for non-negative
guantities; different weighting of tails

— Beta: Useful for bounded quantities (e.g., 0 to 1), and for
representing expert judgments

— Uniform, Triangular: Useful for representing expert judgment

— Spline, Empirical: Useful for representing data; often used to
digitize expert judgments

NC STATE UNIVERSITY

Empirical Versus Parametric Distributions

» Both approaches are based on assumption of
a random, representative data set

* A strictly empirical approach does not involve
extrapolation beyond the range of observed
data

* Artifacts of the shape of an empirical
distribution may be attributable to random
fluctuations

10
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Visualization of Data

* Visualization of data is a useful and important
means for gaining insight into the
characteristics of the data

—central tendency
—dispersion
—skewness
—kurtosis

NC STATE UNIVERSITY _ o
Visualizing Data:
Histogram
0.3 =

g — 25
E 0.2 — e — 20
c | €
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Vaue of the Random Variable
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Visualizing Data:
Cumulative Distribution Functions

» Cumulative distribution functions are a
guantitative way to represent empirical
distributions of data

» The Hazen plotting position is often used:

Fe (X)) =Pr(X <x;) = '—_n(E fori=1,2,..,nandx; <X, <..<X,

* The general approach is to

—rank order the data in ascending order

—assign a rank, i, to each data point (from 1 to n)
—calculate the estimated cumulative probability
—Plot cumulative probability versus x

NC STATE UNIVERSITY

An Example of Empirical Distribution

1
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PCB Concentration (ng/g, wet weight), Leafy Vegetables

An empirical distribution is defined as a discrete
distribution, F, that gives equal probability, 1/n, to each
value x;in the dataset, x (Efron, 1979).

12
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Variability and Uncertainty

» Typically, data sets represent variability in a
guantity over time, space, or members of a
population

» Data are typically a sample from a population

* Ideally, data are a random and representative
sample

» Can make inferences regarding estimated
population statistics and distribution

» Lack of knowledge regarding the true population
characteristics.

* Lack of knowledge = uncertainty

NC STATE UNIVERSITY

Uncertainty and Sampling Distributions

* Uncertainty due to small sample size
— Random fluctuations due to “sampling error”
— Quantified using confidence intervals
* Any statistic of a random variable is itself a random variable
(e.g., mean, variance)
» The probability distribution for a statistic is referred to as a
“sampling distribution.”
» Important for evaluating whether your distribution model
reasonably represents the data
» Can be calculated various ways, for example:
— Analytical solutions (restricted situations)
— Numerical methods (more generally applicable)

13
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Sampling Distributions
and Confidence Intervals

» A sampling distribution is the basis for a
confidence interval

» A confidence interval is based upon specified
percentiles of a sampling distribution
—For example, a 95 percent confidence interval
is typically enclosed by the 2.5™" and 97.5"
percentiles of the sampling distribution
* In principle, sampling distributions and
confidence intervals can be developed for any
statistic

NC STATE LINIVERSITY

Confidence Intervals
for the Mean

» Confidence intervals for means are often
estimated based upon a normality assumption

» This assumption may be invalid for small data
sets and/or highly skewed data sets

» We review the conventional analytical
approach to confidence intervals for the mean

» We present a numerical method for estimating
confidence intervals based upon bootstrap
simulation

14
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Confidence Interval
for the Mean

» The confidence interval for the mean is based
upon the standard error of the mean and a
standardized distribution:

_ S
XiCm

* The standardized distribution is often assumed
to be either the student-t or normal distribution

e For n > 30, there is not much difference
* The student-t distribution is wider for small n

NC STATE UNIVERSITY

Effect of Sample Size on
Confidence Intervals for Mean

90% Confidence Interval

True Mean
99% Confidence Interval

Mean Value of
Standard Normal Variate

-2 T T T
0 25 50 75 100

Number of Data Points, n

15
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Confidence Interval
for the Variance

» The confidence interval for the variance can be
estimated analytically for a normally
distribution population:

n-1) s¢
Pr(calz,n—l £ % £ Cl—a/2,n—1) =1l-a

* The standardized distribution used here is the
chi-square distribution

NC STATE UNIVERSITY

Confidence Interval
for the Variance

3] 99% Confidence Interval

90% Confidence Interval

True Variance

Variance of
Standard Normal Variate

0 25 50 75 100
Number of Data Points, n

16
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Implications of Sampling Error and
Sampling Distributions

» Any statistic that you calculate from a data set
Is only one estimate of the true population
value of that statistic

* In order to evaluate the adequacy of a fitted
distribution, you should consider the range of
possible values for statistics, such as the
parameters of the fitted distribution

» Analytical solutions work in only a few cases
» A numerical method is more broadly applicable

NC STATE UNIVERSITY

Analytical Method:
Advantage and Disadvantage

» Advantage
— Can get an exact estimate of confidence interval
— Simple to calculate

» Disadvantage

— Confidence intervals for means are often estimated
based upon a normality assumption

— This assumption may be invalid for small data sets
and/or highly skewed data sets

— Analytical solutions work in only a few cases

— Can not calculate confidence intervals for some
statistics, e.g., parameters in a distribution

17
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Numerical Method: Bootstrap Simulation

* Introduced by Efron in 1979

» A means for calculating confidence
intervals for statistics in a general manner
for situations in which analytical solutions
are not available

NC STATE UNIVERSITY

Bootstrap Simulation:
Resampling at Random from a Data Set

X = (X1, X2, -y Xp)

N\
F® (X1, X2, ..., Xp)
Example Bootstrap Samples

X"t = (X3, X5, X1, X5, X))
X 2= (Xq, X1, X2, X215 X2
X"3 = (X2, X4 X3 X3, X))

18
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Bootstrap Replications

* For each bootstrap sample, calculate
(replicate) a statistic:

A % *
q =s(x’)
* Repeat the replications B times:
N % * b
dp = S(X"P)

*b=18B

NC STATE UNIVERSITY

Bootstrap Simulation

 Original data set with n values

* B bootstrap samples of the data set,
drawn from a distribution F
—Resampling
— Parametric distribution
* B replications of statistic of interest

— Confidence intervals
— Sampling distributions

19
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Bootstrap Simulation:
Example of the Leafy Vegetable Data Set
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PCB Concentration (ng/g, wet weight), Leafy Vegetables
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Criteria for Selecting a Parameter
Estimation Method

» Consistency: Converges to the “true” value of the
parameter as the number of samples increases.

» Lack of Bias: Average value of the parameter estimate
that is equal to that of the population value.

 Efficiency: Minimum variance in the sampling distribution
of the estimate.

» Sufficiency: Makes maximum use of information contained
in a data set.

» Robustness: Works well even if there are departures from
the underlying distribution.

 Practicality: Computationally efficient

20
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Fitting Distribution to Data
Parameter Estimation Methods

* Method of Matching Moments:

—Typically involves matching the mean and
variance of the distribution to the mean and
variance of the data set (for a 2 parameter
distribution)

—In general involves matching m moments or
central moments of the distribution to those of
the data, where m = number of parameters.

—Example: parameters of the Normal
distribution are the mean and standard
deviation of the data

NC STATE UNIVERSITY

Fitting Distribution to Data:
Parameter Estimation Methods

» Maximum Likelihood Estimation

—Select distribution parameters so that the fitted
distribution is the one most likely to produce the
observed data set

—Involves maximization of the likelihood function:

—The log-likelihood function is often more
convenient to use/program, since it is written as
a sum rather than as a product

21
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Examples of
Log-Likelihood Functions

Name of Distribution ® Log-likelihood Function
Normal n g 1(x-m2i
(m= mean, s = standard deviation) J (ms)=-nlins - EIn(Zp)- 2.1% 2 2 [V)
Lognormal n 3 1(n(x)- m2u

J =-nins - I —ai—22—"y
(m= mean, s = standard deviation, (ms)=-nins - 5In@)-a 752

of log-transformed data)

Gamma 3(a,b) =-nfaIn(b) +InfG@)}+ & | @ - Din(x)- 3§
(a = shape, p = scale, parameters) =11 btva
Weibull o1 I

J@,b)=-nine 2+ 4 L - ninfR 2 82
gbz i=1f gbﬂ gbﬂ

(a = shape, p = scale, parameters) %
Beta 1Ga)Qbi . &

J (@,b)=-ninj y+ai@- Hinx)- (b - Dinf- x)
(a = shape, p = scale, parameters) %Ga+b)¥1 ml{ )

#Note: Parameter values are different for each type of distribution even though the same symbol
may be used to represent parameters of different distributions.

NC STATE UNIVERSITY

Which Parameter Estimation
Method Should Be Used

* No method is necessarily always best

» Sometimes one method will fail for a particular
data set

* MLE is often considered a more efficient
method

» The specific values of distribution parameters
will be different for a given data set if a
different estimation method is used

22
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Parameter Estimation Using
Probability Plots

» Probability plotting is most appropriate as a
“goodness-of-fit” technique

* It is often not the most satisfactory method for
estimating parameters

» To create a probability plot, data must be rank
ordered

 Least-squares regression techniques are
based on an assumption of statistical
independence of data

» This assumption is violated in probability plots

NC STATE UNIVERSITY
Fitting Distributions to Data:
Comparison of Cumulative Distributions
1.0
2
= 0.8 4
g - .
o) Infeasible
& 0.6 4 Region
S 1 O Data
B 04 - o
g | Normal Distribution
3 0.2 1 — Lognormal, MoMM
——  Lognorma, MLE
0.0 T T T
-0.2 0 0.2 04 0.6 0.8
PCB Concentration (ng/g, wet basis)
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Which Distribution
is the Correct One?

» Selection of a distribution is subjective
» With small sample sizes, statistical goodness-
of-fit techniques have little statistical power
» There is judgment in the selection of:
—parametric distribution
—parameter estimation method
—goodness-of-fit methods

—specific criteria to use for rejection in a given
goodness-of-fit method

NC STATE UNIVERSITY

Bootstrap Simulation of Skewness and
Kurtosis to Aid in Selecting a Distribution

6 6 6
54 54 5]
4] 4] 4
2 2 2
£ 34 2 34 £ 31
=1 =] =1
N4 X N4
2 24 2]
14 1] 1
0 T T T 0 T T T 0 T T T
[ 0 1 2 [ 0 1 2 @ W 0 1 2
Skewness Skewness N Skewness
Resampling Normal Lognormal

Normal Distribution May be a Better Fit
Data Could Be a Sample from a Lognormal Distribution

24
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Two-Dimensional Monte Carlo Simulation

[ Specify Probability Distribution F

!

Fori=1to B
(Where B=q)

Bootstrap

Simulation

N
Generate n random samples from F to form
one Bootstrap Samples

By Estimating a Bootstrap Replication of the
Distribution Parameters

!
[ Fit a distribution to each Bootstrap Sample

NC STATE UNIVERSITY

Two-Dimensional Monte Carlo Simulation

Upon Bootstrap replications of distributions
parameters

‘ﬁl Two-Dimensional

Simulation of
’ Variability and

‘ Characterize sampling distributions based

Select one pair of distribution parameters to Uncertainty

Represent variability

Simulate p random samples from the specified ]

distribution to represent variability

|
v

Analyze Results to Characterize: J

«Confidence interval for CDF
|_*Sampling distributions for Mean, Variance and etc.

25
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Bootstrap Simulation of Confidence
Intervals on Fitted Normal Distribution

1.0

o
(o]
!

QO Daa

P
g Infeasible Uncertainty Ranges
g 0.6 Region
5 [] 99 Percent
B o4 B o5 recen
g Il s0Percent
3

0.2

o... Fitted
Distribution
0.0

- I I I I I
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
PCB Concentration (ng/g, Wet bas's)
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Bootstrap Simulation of Confidence
Intervals on Fitted Lognormal Distribution

1.0 _
- ]
= 0.8 4
< ]
3
& 0.6 -
o
= 1
B 04 -
S
% ] Data Set 2
&) 0.2 Method of Matching Moments
< Bootstrap Simulation
] B=2,000, n=2,000
0.0 4 T T T T
0 0.2 04 0.6 0.8 1

PCB Concentration (ng/g, wet basis)
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Examples of Confidence Intervals:
Sensitivity to Selected Distribution

Sdtidtic Norrd Lognomd Lognomd
Digtribution Distribution Digribution
(MoMV)) (MLB

5" Paroantileof Vaidhility (-0.03 0.16) (004,013 (004,013
50" Paroattiledf Vaidhility (015 09 (012,029 (013 028
B" Paroatiled Vaidlity (028 048 028 11 (027,09
ArithmeticMeen (015 028 (015037 (015035
Avithmtic Variane (0.0027,0.020) | (0.0033 0.10) (0.0028, 0.09

NC STATE UNIVERSITY
Example 2: Data Set
for a Partitioning Factor

10
3 08
g O
>
g 06
o ]
2 04
g ] Cumulative Frequency
§ 0.2 1 L] Data Points
OO ) ) ) )
0.0 0.2 0.4 0.6 0.8 10

FGD Partitioning Factor for Chromium (Outlet Ib Cr in FG/Inlet Ib Cr)
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Example Case Studies

* Original data set
* Has a value of 1.0
* Denoted as Data Set 2a (DS2a)
» Alternative Data Set
 Largest value adjusted from 1.0 to 0.96
» Denoted as Data Set 2b (DS2b)

» Evaluate sensitivity of fitted distributions to this
change and to parameter estimation method

NC STATE LINIVERSITY

Dependence Between Arithmetic
Mean and Standard Deviation

0.25

0.29

Variance
o
H
an
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Dependence Between Distribution
Parameters Alpha and Beta

1000
100 4

Beta

0.0 4
0.0 - 2
0.0 -

0.0 : : :
0.0001 0.001 0.01 0.1 1 10 100

NC STATE UNIVERSITY

Second Order Random Variable for
Data Set 2a: Method of Moments
1.0 4

0.8

0.6

0.4

Cumulative Probability

) ) ) )
0.2 0.4 0.6 0.8 1
FGD Partitioning Factor for Chromium (Ib out/lb in)

o - -
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Second Order Random Variable for
Data Set 2a: Based on MLE
1.0 _
> ]
= 0.8 -
3 ]
8
x 0.6 -
2
g 0.4 -
=
>
© 02
0.0 - . -
0 0.2 0.4 0.6 0.8 1
FGD Partitioning Factor for Chromium (Ib out/lb in)

NC STATE UNIVERSITY

Second Order Random Variable for
Data Set 2b: Based on MoMM

1.0

0.8

0.6

04

Cumulative Probability

0.2

0.0 ': T T T T
0 0.2 04 0.6 0.8 1
FGD Partitioning Factor for Chromium (Ib out/lb in)
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Second Order Random Variable for
Data Set 2b: Based on MLE
1.0

0.8 -
0.6 -
0.4 -
0.2 .
0.0 4 T T T
0 0.2 0.4 0.6 0.8 1

FGD Partitioning Factor for Chromium (Ib out /b in)

Cumulative Probability

NC STATE UNIVERSITY

Comparison of Four Cases for
Data Sets 2a and 2b

[y
o

Cumulative Probability
o o o o
N S~ o (o<}

Cumulative Probablllty
o o
PN

o
N}

o
o

T T T T 1
0 0.2 0.4 0.6 0.8 1
FGD Pa1|t|on|ng Fa:tor for Chromlum (Ib outllb in) FGD Partitioning Factor for Chromium (Ib out/Ib in)

Cumulative Probablllty
o o o
N IS o
Cumulative Probablllty
o o o
N IS o

T T T 1
0.2 0.4 0.6 0.8 1
FGD Pa1|t|on|ng Factor for Chromlum (Ib outllb in) FGD Partitioning Factor for Chromium (Ib out /Ib in)
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Data Sets 2a and 2b: Confidence
Intervals for Selected Statistics

Statistic DS3a DS3a DS3b DS3b

MoMM MLE MoMM MLE

5" Percentile of Variability (0, .22) (0, .81) (0, .23) (0,.22)
50" Percentile of Variability (0, .99) (0.11, 0.996) (0,0.98) (0.11,0.78)
95" Percentile of Variability | (0.41,1.00) | (0.85,1.00) | (0.40,1.00) | (0.46,0.999)
Parameter a (0.02,2.22) | (0.16,7.15) | (0.03,2.34) | (0.32,5.79)
Parameter b (0.02,5.54) | (0.11,1.32) | (0.04,6.14) | (0.37,7.75)
Arithmetic Mean (0.10,0.75) | (0.26,0.95) | (0.11,0.73) | (0.18,0.72)
Arithmetic Variance (0.013,0.23) | (0.004,0.27) | (0.013,0.23) | (0.015,0.20)

NC STATE UNIVERSITY

Goodness-of-Fit Tests

different tests)

value

“correct”

* Null hypothesis: data were obtained from the
hypothesized distribution

* Require a minimum amount of data (varies for

* A test statistic is calculated based on the data
» The value of the test statistic is compared to a critical

« If the test statistic exceeds the critical value, then the
null hypothesis is rejected

* One cannot “prove” that a hypothesized distribution is

32
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Chi-Squared Test

 select a hypothesized distribution

» estimate the parameters of the distribution from the data
set (need at least 25)

» group the values into cells (or bins) in which each cell
has at least five data points

« calculate the probability of obtaining values within the
range of each cell based upon the hypothesized
distribution

* calculate the expected number of data points that
should be in each cell if the hypothesized distribution is
acceptable

* calculate a test statistic; and

* evaluate the test statistic

Example of Chi-Squared Test: Normal
Distribution Fitted to a Data Set (n=25)

End Points of Each Number Cell Expected
Cell of Probability, p,| Number of
Cell Lower Upper Values based on [Valuesin Cell,
Number [ Bound Bound inCell, M, [ Normal Dist. E Test Statistic

1 0.04 0.09 5 0.0941 2.35 2.98
2 0.09 0.12 5 0.0732 1.83 5.50]
3 0.12 0.17 5 0.1432 3.58 0.56
4 0.17 0.27 5 0.2955 7.39 0.77
5 0.27 0.51 5 0.2699 6.75 0.45]
Sum of Values: 25 0.876 21.90 10.27

« Test Statistic: X2=i|:Sl(M%iEi)—2

» Compare to chi-square distribution with k-r-1 degrees
of freedom, k = 5 bins, r = 2 parameters; dof = 2

* Critical value = 6.0, test value = 10.3, reject hypothesis
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Kolmogorov-Smirnov Test

» Comparison between a stepwise empirical CDF and the
CDF of the hypothesized distribution.

* Maximum discrepancy in the estimated cumulative
probabilities for the two CDFs is identified.

* Maximum discrepancy is then compared to a critical value
of the test statistic.

* If the maximum discrepancy is larger than the critical
value, then the hypothesized distribution is rejected

* More sensitive near the center of the distribution than at
the tails

* Need at least 5 data points

NC STATE UNIVERSITY

Kolmogorov-Smirnov Test Applied
to Leafy Produce Example, Normal Dist.

1

0.8

0.6

0.4 -

® Data Set

0.2 -

Stepwise Cumulative Distribution

Fitted Normal Distribution

Continuous Cumulative Frequency Function, F(x)

Stepwise Cumulative Frequency Function, 3(x)

T T T
0.00 0.10 0.20 0.30 0.40 0.50
PCB Concentration, ng/g (wet basis)

Maximum difference is 0.17, which is less than critical value of 0.4
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Kolmogorov-Smirnov Test Applied
to Leafy Produce Example, Lognormal

1 ¢

0.8

0.6

0.4

® Data Set

0.2

Stepwise Cumulative Distribution

Fitted Lognormal Distribution

Stepwise Cumulative Frequency Function, $(X)
Continuous Cumulative Frequency Function, F(x)

o

T T T
0.00 0.25 0.50 0.75 1.00
PCB Concentration, ng/g (wet basis)

Maximum difference is 0.24, which is less than critical value of 0.4

NC STATE UNIVERSITY

Kolmogorov-Smirnov Test Applied
to Leafy Produce Example

» Cannot reject either the Normal or Lognormal
as a fit to the data

» Goodness-of-fit tests may lead to inconclusive
results
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Anderson-Darling Test

* A modification of the K-S test

» Gives more weight to the tails than does the K-
S test

* The A-D test is not a distribution-free test. For
different distributions, A-D test statistics and
the corresponding critical values are different

NC STATE UNIVERSITY

Selection of Probabilistic Distribution Models

Consideration of processes that generate random
variable

Goodness of fit

The purpose of application of distributions

Goodness-of-fit tests may lead to inconclusive
results

Bootstrap simulation technique
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Advice from Hahn and Shapiro (1967)

* One might conclude... that a proper procedure for selecting a
distribution is to consider a wide variety of possible models,
evaluate each by the methods here described, and assume as
correct the one that provides the best fit to the data. However,
no such approach is being suggested. Where possible, the
selection of the model should be based on an understanding of
the underlying physical properties... The distributional test then
provides a useful mechanism for evaluating the adequacy of the
physical interpretation. Only as a last resort is the reverse
procedure warranted, and then, only with much care, for,
although many models might appear appropriate within the
range of the data, they might well be in error in the range for
which predictions are desired.[pp 260-261].

NC STATE UNIVERSITY

For More Information

» Most of the examples presented here are from
Chapter 5 of:

Cullen, A.C., and H.C. Frey, Probabilistic
Techniques in Exposure Assessment: A
Handbook for Dealing with Variability and
Uncertainty in Models and Inputs, Plenum:
New York. 1999.
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Introduction to AuvTool, Installation and
Its Use

NC STATE UNIVERSITY

Junyu (Allen) Zheng, Ph.D
H. Christopher Frey, Ph.D

Department of Civil Engineering
North Carolina State University
Raleigh, NC 27695

NC STATE UNIVERSITY

Acknowledgement and Disclaimer

» Developed at N.C. State University with
support from the Office of Research and
Development (ORD) of the U.S. Environmental
Protection Agency

* AuvTool has not been subject to any EPA
review. Therefore, it does not necessarily
reflect the views of the Agency and no official
endorsement should be inferred.
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AuvTool: Objectives

* To develop a software module named AuvTool
(Analysis of Variability and Uncertainty Tool) for
use with the EPA Stochastic Human Exposure
Dose Simulation (SHEDS) modeling framework

* Toimplement two-dimensional Monte Carlo
method for simultaneously quantifying variability
and uncertainty through the AuvTool

* To make the module more generally applicable for
some other quantitative analysis fields

NC STATE UNIVERSITY

AuvTool System Development: Design
Considerations
» Easily accessible to EPA SHEDS model

» Batch analysis to deal with a large amount of
data sets

» Generally applicable for other quantitative
analysis fields such as emission estimation and
risk assessment

» Extensibility and expansion of AuvTool

39



H. Christopher Frey and Junyu Zheng
North Carolina Sate University December 2002 of the Society for Risk Analysis

Annual Meeting Workshop

NC STATE UNIVERSITY

AuvTool Main Features

* An input sheet similar to spreadsheet
* List of Distributions

— Normal — Lognormal
— Beta — Gamma

— Weibull — Uniform

— Symmetric Triangle — Empirical

— Mixture normal with two components

— Mixture lognormal with two components
» Parameter Estimation Methods

— Matching Moment

— Maximum Likelihood Estimation (MLE)

NC STATE UNIVERSITY

AuvTool Main Features (Cont’d)

Batch analysis

— To automatically help user choose the best distributions
Bootstrap simulation and two-dimensional
simulation

— Single component distributions,

— mixture distributions

Statistical Goodness of fit tests

— Kolmogorov-Smirnov test (K-S)

— Anderson-Darling test (A-D)
Instant graphical presentation and tabular
summarization of results
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AuvTool Software Implementation:
Structure Design

b Variability
Variability Analysis: Analysis Result
Fitting Distribution Reporting Module
Dataset by Dataset

Module

Random Sample
Generator
Module

Uncertainty Analysis:
Siatzﬁgr&osgjfe Bootstrap Simulation Analyzing the
Batch Analysis Module Sfampll_ng_ Dataft
Module of Statistics o

Interests

Loading Module

Distribution
Information
Module

Uncertainty
Analysis Result
Reporting Module

Display a Visual
Fitted Fit Comparison

Uncertainty Analysis: Uncertainty
Mixture Bootstrap Analysis
Data Entry, N .
Importing ;,nd -| Simulation Module Result Mixture
Variability Analysis:

Exporting
Module

Reporting

Mixture Distribution

Module
Module

Variability Analysis
Mixture Result
Reporting Module

NC STATE UNIVERSITY

AuvTool Software Development Environment

and Tools

* Visual C++ 6.0

- To implement all calculations and graphic user interface
* Graphics Server 5.0A

- To present calculation results in the visual graphic form
e Spread 3.0

- To provide a spreadsheet for user data input and calculation

result output in tabular form

* Based on Windows 98 development environment
[ )

An object-oriented programming technology is used
- More than 45 C++ classes are designed
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AuvTool Installation

Place the CD-ROM in your CD-ROM drive;

Click the Start button;

Choose Run... from the Start menu;

Type “X:\ XXX\" SETUP.EXE” where “X:\ " is the drive and
directory to which you copied the installation files. The
Installation Program will begin. Follow the instructions on the
screen.

PonE

You also can install AuvTool as follows:

1. Place the AuvTool CD-ROM in the CD-ROM drive;
2. Double-click the My Computer icon on the desktop;
3. Double-click the CD-ROM drive in the My Computer window; and
4. Double-click the “SETUP.EXE” on the CD-ROM.
The Installation program will start. Follow the instructions on the
screen.

NC STATE UNIVERSITY

The Use of AuvTool

* Online help system in the AuvTool

» A PDF file of AuvTool’s user guide is available in
the accompanying CD disk

* An demo example
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Data Entry, Importing and Exporting

i AuvT ool - [AuvTool]

¥% Ele Ecit View Uncerainty BatchMode Window Help SETE|
DS & BB S 2 W
[Fow 3: Col 5 Name Dataset | = T~ The first rowis fitle 10w =
Datassil | Datoset? |  Dotaset3 |  Datasetd |  Datasets | F [ & [ wu T I | | | (R T
T 0.8600537 0.8500537 08500537 08600537 06599163
2 07957628 0.7957628 0.7957620 07957628 05754917
3 Srarisr  OSwvaw  Obvavamr 08874
4 0.9100306 03100908 03100908 09100306 07290770
5 1.2397850 1.2397650 1.2397650 1.2397850 1.2572018
6 1.0280496 1.0280435 1.0280435 1.0280496 03037735
7 1.0821564 1.0821564 1.0821564 1.0821564 03892624
] 07679276 07679276 07679276 07679276 05404533
s | 05773388 05773989 05773989 057733883 0.3263502
10 | 0.4426231 0.4a26231 0.4a26231 04426231 0.2045598
11 | 10643828 10643828 1.0643828
12| 05592417 05592417 05592417
13 | 0.4770342 04770342 04770342
14| 0.8723095 0.8723095 08723096
15 | 21210087 212100867 31210067
16 | 10486513 10486513 1.0456513
17 | 1.2443522 1.2843522 1.2443522
5 1.0237618 1.0237618 1.0237618
s | 1.7555076 1.7555076 1.7555076
N 21814530 21814530 21814990
EN 07480611 07480611
2z | 06869520 06669520
|22 | 11089564 1.1089564
[ 2| 06238788 06238788
o5 | 1.9628555 1.9628555
o6 | 1.0434852 1.0434862
[ o7 | 1.8293716 1.8293716
[2s | 16648288 1.6648288
[ 2o | 07277116 07277116
[ 50| 11605744 11605744
El 07959211 07959211
El 08354525 00954526
=N 2.2244581 22242581
B 09267319 09267319 [
[ | 11129726 1.1129726
[ o | 05535690 05535630 =
< ;l_‘ B
< T >
For Help, press F1 [ WoM [

ariable Name Sarmple Size Eriammeiay Bataimsiar tethod

MoData Name 1 15 10.0 5.0 MNormal 0
MNoData Mame 2 1] 05 0.25 1 1
MNaoData Name 3 25 205 10.0 Gamma -1

First Second | Diistifaufia |Est|mat|0n

=1

[

o

.

o

wi}

0K Cancel
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Fitting a Distribution for Variability: Dataset
by Dataset

Fit a single dist [_[CTx]
i Input [~ Statistical Tests
e Fitting a Distribution for Dataset 1 e e
IDalaset 1 hd
Distrbution Tupe 0.141475914511794
INmma\ - Critical Value at 0.05

Estimation Method

' Method Of Mament

Significant Level

0.258

1 Max. Likelihoad Method Passed o Mot ?

g
=
2 + Data Fassed
- {n=10)
Go g —Anderson-Darling Test—
k] /Z Mormal Value
Output—————————— =
£ 0.158062250395359
Mean 6

Critical Value at 0.05
Significant Lewvel

0.752

Passed or Mot ?

0.827E61

Standard Deviation

0.250126

Passed
Fitting Result Summary Bootstiap Cancel
NC STATE UNIVER
Batch Analysis (1)
Batch Fiting (==
Yarishle Name | Mo, Of Data kean g:{}g:‘;ﬁ D\él}:\nh‘it;nn E:;g?:;;n Graph Cnr;’;:r?slinn l

| 1 |Datasetl 10 0.627661 0.237291 Auto = |Moment = Show Show All

2 | Dataset? 20 1.081118 0.622275 Auto = |Moment (I Show Show All

3 | Datasetd 50 1.013042 0.537643 Auto = |Moment = Show Show All

4 | Dataset4 1000 0.962020 0.491188 Auto = |Moment = Show Show All

5 | Datasets 10 0.650915 0.313393 Auto = |Moment (I Show Show All

3 Mormal = |Moment 2 Show Show All

7 Lognormal = |MLE = Show Show All

[ Gamma T mA i) Show Show All
[a |
[0 ]
1]
[z |
13 ]
4]

15 Jj
4 3

Automatic Batch Analsyiz for Uncertainty S ampling Distributions
Save ... | Fitting Aesult Summary... | Batch Bootstrap... | & Method of Matching Mament
Uncertainty Sampling Summary..... |
load. | Unceaily Resul Summay.. | K | " Mat Likslihood Estimation
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Batch Analysis (2)

Batch Fitting [_ o]
Slar!dard D\smb_uhnm Estimation Graph Vism_il_ B_nmslr!ip Has Original | Replication |2
Deviation Choice ethod Comparision Data MNumber

1_|0.237201 Aulo x|Moment - Show Show All Bootstrap [« 200

2 |0.622275 Auto ~ |Moment = Show Show All Bootstrap |« 200

3 |0.537643 Auto .~ |Moment i Show Show All Bootstrap g 200

4 |0.491188 Auto x|Moment - Show Show All Bootstrap o 200

5 _[0:313383 Aulo x|Moment - Show Show All Bootstrap |« 200

6 |5.000000 Marmal ~ |Moment = Show Show All Bootstrap - 200

7 |0.431996 Lognormal [ w|MLE - Show Show All Bootstrap = 200

G 45276326 Gamme. T NA = Show Show All Bootstrap - 200
o |
|
Kl
1z |
13 |
4]

15 -
4 e

Automatic Batch Analsyis for Uncertainty S ampling Distributions
Save... | Fiting Resut Summay... | Batch Bootsirap.. | & Methord of Metching Momert
Uncertainy Sampling Summay..... |
Load.. | Uncerainty Fesul Summa.. | oK | € Max. Likelhood Estimalion

NC STATE UNIVERSITY

Bootstrap Simulation: Probability Band

Graph

Boatstrap Simulation

Bootstrap Sinulation Graph ]

Bootstrap Simulation Data |

Fitting Uncertainty Sampling Distributions |

Input

Probability Band for Dataset 1 ) Data
Curent Dataset u R
ncertaints ()
Dataset 1 = 10 v
[ 95 Percent
Current Distribution Tupe I 50 Percent
Lognoimal hel [ 50 Percent
Cutrent E stimation Methad = & Frobabity Band
z
Moment E] " Uncettainty of Statistics
S 06
& (= Uricertainty o Statistios
i~ Boatstrap Parameters 2 Gtatistics
Mo. 0f Replication (6] = Mean E
500 g M
=] ) Percentile fethad
Mo. For Variabilty € BCahethod
600 0.2 (- 86 % Gonfidence ntenvel —
Sample Size From [0
10
00 { [
0.0 29
ean [0
i3 Concel | apoy | Hen |
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Bootstrap Simulation- Data

Bootstrap Simulation

Bootstrap Simulation Graph Bootstrap Simulation Data | Fitting Uncaitainty Sampling Distributions |

The curtent dalasel. [Dataset 1 |

25% 0% 25% B0 %% 75 % 95 % 975 % Mean | Standlard First =

Percentile | Percentile | Percentile | Percentile | Percentile | Percentile | Percentile Devigtion | Paramster | P
1 §00231 0034936  0.096004 0160038 0231063  0.366725 0.406057 0704284 0.229956 0782276 31
[ 2 10047509 0071223 0137827 0208579 0.ZB00S0  0.405443 0.451596 0899798 0.247614 1.010924 34
[ 3 10064202 0085362 0167706 0228513 0306748  0.430458 0.485965 0678662 0.224000 0758898 3z
[ 4 10079229 0096527 0184829 0248279 0.328989  0.4E1568 0.500799 0939681 0.199391 1.025726 49
[ 5 10089546 0111032 0197000 0264167 0343204  0.478061 0.516790 0868954 0.233184 0855657 43
[ 6 100597568 07122677  0.210283 0282690  0.358487  0.487119 0534432 0857654 0.268971 1.050808 40
[ 7 10107160 0128767  0.223182 0298085 0373321 0.497642 0.546086 0754625 0.246844 0.840814 34
[ & 10177020 07138630 0231579 0309430 0.384932  0.511008 0.543029 0909269 0.220701 1.008090 38
[ 9 10116943 0143778 0.242623 0316066 0383838  0.625308 0.558793 0806077 0.247277 0595084 42
10_{0.7119963 0752535  0.250433 0325500 0401833  0.529102 0563225 0934839 0.263095 1.043014 3B

0132876 0153600 0.261619 0335413 0408582 0546220 0569558 0.766579 0.292287 0.860379 24

[ 12 {0.138227 0166995 0.268153 0344053 0.479143  0.549117 0595928 0905737 0.300435 1.011235 33
| 13 [0.154455 0172261 0.277745 0351320 0426145 0560266 0600910 0.843718 0.176350 0913487 55
| 14 {0.160772 0177864 0.283435 0359599 0.436004  0.568513 0.604215 0.864943 0.230747 0.954605 40
[ 15 [0.164733 0182892 0.287071 0.368684 0442726 0572844 0607105 0.834175 0.335634 0.968947 21
| 18 {0.169328 0188666 0.293855 0375746 0.447965  0.575187 0611011 0.964597 0.188018 1.042179 5.7
[ 17 [0.170473 0192741 0.298169 0378262 0454727  0.578866 0612767 0.861786 0.260408 0.966500 33
| 18 {0.178660 0198722 0302213 0384481 0.461097  0.585521 0.619927 0.848587 0.269452 0963425 28
| 13 [0.184495 0203415 0.307188 0391116 0467120 0590677 0.630218 0.734263 0.264996 0.819336 33
| 20 {0.187437 0205443 0.314704 0.395880  0.473408  0.590314 0635108 0.714347 0.280859 0.812667 26
21 |0.187602 021137 0318298 0401261 0477621  0.600088 0639040 0.863370 0.232206 0946232 44
22 10190944 0216223 0.32310% 0406695 0.483535  0.601144 0.643577 0.845724 0.228619 0.930440 42 _
T B P TP TR  YSY FY S T SR o R El_‘

ok | cencel sy | Hep |

NIVER

ITY

Bootstrap: Uncertainty Graph

Bootstrap Simulation

Bootstrap Simulation Graph | Bootstrap Simulation Data | Fitting Uncaitainty Sampling Distributions |

e Uncertainty in the Mean for Dataset 1 O Data
Curent D ataset
lﬁama‘ " = i Uncertainty Ranges
[ 95 Percent
Current Distribution Type I 90 Percent
[w/eibull aal 3 &0 Percent
Curent Estimation Methad E Gragh
= ~ Graph of
Moment E € Prabability Band
S
£ 0.6+ * Uncertainty of Statistics
- Bootstrap Parameters: 2 -~ Uncertainty of
No. Of Replication (B) s el Statistics
500 E Mean -
3
No. For Variabily
500 0.2+ 95 % Confidence Interval——

Sample Size From [0.B7547347815547
[0
0.0 } t } } ] To [08807H1ETE81751

Go

[ Apply Help
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Baolstrap Simulation X
Boatstiap Simulation Graph | Buoatstrap Simulation Data Fitting Uncertainty Sampling Distributions: |
E T
Data Sets Fitting a Distribution for Mean for Dataset 1 K5 Test
Dataset 1 -
1.0+ an
Sampiing Size 0.0368071608252081
I Citical Value at 0,05
Fited Distibution 2 8T i
Lognomal Z 0.0396231 24551 2563
S
Stalistcs of Interest s Passed or Mot 7
[-N
Moan = > s Data Fassed
S i 3 n=500)
(A B LAl - Anderson Darling Test
Ao - H / Mormal e
Estimation Method o 1111522702285
Ciitical Value at 0.05
 Method Of Moment 027 Significan Level
 Man Likelihood Method A
Estimation Resuls
M 0.0 t + } { Passed or Mot ?
(E=1n 0.5 [iks 08 1.0 11 1.3
Failed
0. 6246051 86352338 Dataset 1
Standard Devistion
0075061 84015363212 Uncertainty Distribution Summaries |
0k | Concel Apply Help
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Variability Analysis Result Reporting (1)

W ariability Analysis: Fitting Result Summary
™ Included Yariables without original data
Dataset Name Mo, Of Data | Distribution | Estimation First Second K;I
Fuoints Type Method FParametar | Parametar
1 |Datasetl 10 Weibull boment 0.81730 373194
2 | Dataset? 20 Lognormal  Moment -0.07154 0.54696
3 | Dataset3 50 Lognormal  Moment -0.11336 050263
4 | Datasetd 1000 Lognormal  Moment -0.12984 0.47275
5 | Datoseth 10 Marmal toment 0.65092 0.33035
b
7
g
g i
| 3|
oK | Cancel |
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Variability Analysis Result Reporting (2)

Y ariability Analysis: Fitting Result Summary

™ Included Yariables without original data

=

First Second KS Toct And_erson— KS Test AD test -
Farameter | Parametar Darling Test |Passed or Not| Passed or Mot
091730 373194 013717 0162180 Passed Passed
-0.07159 0.54696 0.14786 0.465020 Passed Passed
-0.11336 050263 0.09052 0317267 Passed Passed
-0.12989 0.47275 0.01583 0306336 Passed Passed
0.65092 0.33035 0.13662 0.205622 Passed Passed

Cancel

NC STATE LINIVERSITY

Variability Analysis Result Reporting (3)

Y ariability Analysis: Fitting Result Summary

¥ included Yanables without original datz

Dataset Name No.O_fData Distribution | Estimation First Second K|
Fuoints Type Method FParametar | Parametar
1 |Datasetl 10 Weibull boment 0.81730 373194
| 2 | Dataset? 20 Lognormal  Moment -0.071549 0.54R96
| 3 |Datasetd 50 Lognormal  koment -0.11336 050263
| 4 |Datasetd 1000 Lognormal  Moment -0.12984 0.47275
| 5 |Datasetb 10 Marmal toment 0.65092 0.33035
| & |MoDatarame? 15 MNarmal tdoment 10.00000 5.00000 A
| 7 |MoDataMName2 20 Lognormal — MLE 0.50000 0.25000 I
| & |MoDataMame3 £h Gamma THA 20.50000 10.00000 A
N :
o t
oK I Cancel
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Uncertainty Analysis Result Reporting (1)

Uncertainty Analysis Summary
Distribution | Estimation Mean Mean taan Std. =

DeeeaiNema N @i Type Method 2.5% Percentile Iean | 5975 Parcentie | 2.5%_]

|1 [Dataset] L Weibull Moment 0.68a012 0.526736 0.977039 n.1za

|2 |Dataset2 20 Lognormal  Moment 0.635350 1.076356 1.365600 0.337

|3 |Datasetd 1] Lognormal — Moment 0.663062 1.008503 1.147666 0.376

| 4 |Datasetd non Lognormal  Mament 0951564 0982140 1013923 0.448

| 9 |Dataseth 1n MNarmal Mament 0.415434 0651154 0868226 0172

| B |MoDataMName 1 15 MNarmal Moment 7497081 9.962685 12793174 3ns

|7 |MoData Name 2 20 Lognormal ~ Moment 1.519683 1.703602 18593432 0.260

|_8& |MoData MName 3 25 Gamma Moment 187.924457 205114160 221 796368 31.04

El

o]

] —

|1z |

R

mES

N

|16 |

e =

I o]

Ok Cancel
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Uncertainty Analysis Result Reporting (2)

Uncertainty Analysis Summary
Estimation Mean Mean | tMean Stdl. Deviation | Std. Deviation Std. Deviation =
Method | 2.5% Percentile Mean 975 Percentile | 25% Percentile taan 37 5% Percentls | _|

[ 1 |Moment 0.B8E012 0.826736 0.977089 0129039 0.237607 0.347369

[ 2 |Moment 0.835350 1.078356 1.385800 0337081 0.606595 1.051127

[ 3 |Moment 01.883052 1.009503 1.147866 0.376662 0.522093 0.733652

[ 4 |Moment 0951584 0882140 1.013923 0448970 0.430640 0536754

[ 5 |Moment 0.415494 0E51159 0.868226 0172858 0.3z20810 0.469382

| B |Moment 7.497081 9962685 12743174 3015366 4.914352 B.864976

[ 7 |Moment 1519583 1.703602 1.883432 0.260687 0.424432 0.628553

| & |Moment 187.924497 205.114160 221.796365 31.040363 44.766731 549.796766

El
[0 |
i1 ]

ER

R

mES

N

|16 |

e =

T o O

Cancel
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Uncertainty Analysis Result Reporting (3):
SHEDS Model Format

Summary on uncertainties in mean. std. deviation and other statistics
& EP& SHEDS Model Format I™ | Display Statisticall Test Besults
" General Format ™| Display Empitical Distibutiors of Statistics
¥ ariability 1st Parameter | Uncetainty Dist Tt Parameter | 2nd Parameter Srd Para Ath Parz 2
VarisbizName | ok ation For Tst Para u u W v |
1 JDatasetl [ eibull 091730 Mormal 0.92136 0.08586
2 | Dataset 2 Lognormal 007153 Mormal -0.09188 0.10304
3 Dataset 3 Lagnormal 011336 Marmal -0.11146 0.07731
4 | Dataset 4 Lognormal -012383  Mormal -0.12338 0.01585
5 | Datasets Hormal 0.B5092  ‘weibull 0.69372 7.23298
E_|MoDataMame 1 | Mormal 1000000 Gamma EE.47331 015120
7 _|MoDataMame 2 Loghormal 0.50000 Mormal 0.43271 0.05765
8 |MaDataMame 3 | Gamma 20.50000°  Lognarmal 3.09552 0.33962
&
10
11
12
12
14
158
16
7 -
| _>IJ
0K I Cancel

Uncertainty Analysis Result Reporting (4):
SHEDS Model Format

Summary on uncertainties in mean. std. deviation and other statistics
& EPA SHEDS Model Format I Diisplay Statistical Test Hesults
" General Format = | Display Empirica Distibutisns of Statistics
Ath Para, 2nd Parameter | Uncetainty Dist. For | 1st Parameter | 2nd Pararnster =
“Yariable Mame i 1l 2nd. Para u 1) 3rd Para. (U] | 4tk Para._‘
1 |Dataset 1 373194 Lagnarmal 1.20224 0.35335
2 | Dataset 2 0.54E36 Lognormnal -0.EEE42 018839
3 Dataset 3 0.50263 Lagnarmal 071438 013827
4 | Dataset 4 0.47275 Lognormnal 075273 003121
5 | Datasets 0.33035  Beta 9.69309 20.97861
E_|MoData Mame 1 5.00000 Lognormnal 1.56480 0.20155
7 |MoData Mame 2 0.26000 Mormal 0.24349 0.03954
8 |MoData Mame 3 1000000 Gamma 10.39624 0932wz
9
10
1
12
13
14
15
16
= -
. | LlJ
[u].8 I Cancel
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Uncertainty Analysis Result Reporting (5):
General Format

Summary on uncertainties in mean, std. deviation and other statistics
 EPA SHEDS Model Format ¥ Display Stetishioal Test Results
1 General Format I™ Display Empiical Distributions of Statistics
A [ B [ c [ o E [ F [al -
2
3| Wariable Mame MNo.Of Data Distribution
4 |Datazetl 200 MNarmal
5 |Dataset? 200 Lognorma
f_| Dataset3 200 Lognorma
7 | Datasetd 200 Beta
g | Dataseth 200 Beta
9 |MoDataMame 1200 Lognorma
10 [MoData Name Z 200 Gamma
11 _[MoData Name 3200 MNormal
12
13 Mean
14 | Wariable Name MNo.Of Data K3%alue
16 |Dataset1 200 0.0454
18 | Dataset 2 200 0.0580 -
4 r
oK I Cancel I

NC STATE UN

Iy

Uncertainty Analysis Result Reporting (6):

General Format

Summary on uncertainties in mean_ std. deviation and other statistics
© EPA SHEDS Model Format IV Display Statistical Test Results
1 General Format I Display Empitical Dishibutions of Statistics
Gl H I | I J I K [ [ I ™ [ =
| 2 | Std.Deviation First Para. _
| 3 | Distribution tdethod First Para. Second Para
| 4 | Mormal koment 024486 0.05783
| & | Lognaormal roment -0.54517 0.28622
| 6 | Lognormal kMorment -0.63845 0.19560
| 7 | Beta homent 272.00962 283.44956
| 8 | Beta kornent 969309 20.97861
| 8 | Lognomal Moment 1.56480 0.20155
| 10 | Gemma kdoment 28.99175 0.01453
| 11 | Mormal tdoment 44.08373 71277
|12 |
| 13 | Std Deviation First Para_
| 14 | KSWalue kS Passed ADalue AD Passed
| 15 | 0.0454 Passed 0.25506 Passed
18 0.0580 Passed 041315 Passed
4
o ] Cancel
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Conclusion

* Implemented a general tool for quantifying
variability and uncertainty in model inputs

* Provided the required variability and uncertainty
inputs to the EPA/SHEDS model

» Can be generally used in any application where
characterization of variability and uncertainty for
datasets is needed.

NC STATE UNIVERSITY

More about AuvTool

* Not a commercial product
* Provided “as is” as a research tool

» Most but not all capabilities described in this
workshop are implemented

» No warrantees of any kind

* |t has been tested and found to work the best
on Windows 98/ME.

* No formal technical support

* No resources at this time for technical support
or further modification
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Potential Bugs in AuvTool

* Program may crash when doing bootstrap
simulation (especially for mixture distributions
in Windows XP version)

» Importing Excel files or exporting sheets to
Excel files may not be successful

NC STATE UNIVERSITY
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Emissions Data Sets
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H. Christopher Frey, Ph.D
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Motivations: Censored Datasets

» Toxic air pollutants pose human health risks in
urban areas
* Quantification of variability and uncertainty for
emissions from air toxics is needed for human
exposure and risk analysis
* Emission data sets for urban air toxics often
contain several observations as below detection
limit, which are referred to as “censored”
— Single detection limit
— Multiple detection limits
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Objectives

* To fit parametric distributions using Maximum
Likelihood Estimation (MLE) to censored data
sets

» To quantify variability and uncertainty for
censored data sets using empirical bootstrap
simulations

» To test and apply this method
» To compare with conventional approaches

NC STATE UNIVERSITY

Conventional Approaches for Handling
Non-Detects When Calculating the Mean

» Use values only above Detection Limit (DL)
» Replace values below DL with zero

» Replace values below DL by DL/2

» Replace values below DL by DL
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Alternative to Conventional Approaches

Fit a parametric distribution to censored data
using Maximum Likelihood Estimation (MLE)

MLE is asymptotically unbiased
Fitted distribution is the best estimate of variability
Can estimate mean from the fitted distribution

Also can estimate other statistics (e.g., standard
deviation)

» Can quantify uncertainty because of random
sampling error

» Bootstrap simulation can be used to quantify
uncertainty

NC STATE UNIVERSITY

Maximize the Likelihood Function for Parametric
Distribution Fitted to Censored Data

L@ 0,5+ ) = Of(x [SHEPAS qk)uOé(_)F(DLmlql,qz, qk)l%z

L = Likelihood function

DL, = The mt detection limit

f = Probability density function

F = Cumulative distribution function

ND,, = Number of non-detects corresponding to detection limit

DL, where, m=1,2,...,p

p = Number of detection limits

X = Detected data point, where,i=1,2, ..., n
;.9 « = Parameters of the distribution
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Example Results of MLE: Fitted to Gamma,
No Censoring

|
2 08 2
= .
S 06 1
£ 2
o .
E 041 + data set
)}
S — fitted gamma distribution
jun
O 0.2+
I
0 ‘ ‘ ‘ ‘
0 1 2 3 4 5 6

Value of Random Variable

NC STATE UNIVERSITY

Example Results of MLE: Fitted to Gamma,
30% Censoring

o
o]

o
o

data set

o
S
I

fitted gamma distribution

Cumulative Probability

ool f1 s detection limit

0 1 2 3 4 5 6

Value of Random Variable
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Example Results of MLE: Fitted to Gamma,
60% Censoring

2 0.8 *
3
38
S 0.6
o
.g | data set
T 0.4 ) o
E fitted gamma distribution
3 o214 ot e detection limit
O T T T T
0 1 2 3 4 5 6

Value of Random Variable

NC STATE UNIVERSITY

Methodology

» Scheme of
guantification
of uncertainty |
and variability

Fit Distribution |

[ Simulate Fitted Distribution |

for censored T
data sets | Calculate Mean |
Yes
No
(___ Distribution of Mean ]
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Methodology: Empirical Bootstrap
Simulation

sample at
random with

(X, Xgperer X1) replacement (X%, X,*,..., X_¥)

. \ Empirical bootstrap
Original data set sample

X; = original data point
X;’= random value from original data
i =1,n

n = sample size of original data

NC STATE UNIVERSITY

Empirical Bootstrap Simulation: Example

Sample at random

with replacement (3,1,9,1)
(1,3,6,9) ©, 3, 6,9)
Original data set (1, 6,1, 3)
Empirical B
Bootstrap (9,1,6,9)
Samples

* Repeat B times, where B = 500
» Each time, calculate a statistic (e.g. distribution parameters)
» The B values of the statistic represent uncertainty
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Methodology: Empirical Bootstrap
Simulation for Censored Data Sets

Sample with '

%%%gﬂ% replacement gd gd = éd:gd

* In the original data set, either a true value is given
for detected points or the detection limit is given
for censored point

» An Indicator symbol d; (1 or 0) is used to indicate
the status of x;

« Randomly sample both x; and d, at the same time

NC STATE UNIVERSITY

Test Case 1

» 20 synthetic data points were generated
from a gamma distribution (mean =1 and
standard deviation = 1)

* 0%, 30% and 60% censoring
« Gamma and lognormal distributions were fit

to the censored empirical bootstrap
samples
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Results: Fitted Gamma Distribution,
No Censoring

100 T ————s

> 0.80 —

E

8 060 O DataSet

% — —— Fitted Distribution

= Confidence Interval

T 040 %

Z m percent

3 [] 90 percent
0.20-| Jf [ ] 95 percent
0.00 &£ T T T T T T T T

0 1 2 3 4 5 6

Vaue of Random Variable

NC STATE UNIVERSITY

Results: Fitted Gamma Distribution,
30% Censoring

1.00 I
1
> 0.80 '
3 I
S 060 | O Daaset
T — — —_ Fitted Distribution
< Confidence Interval
g 0.40 | I 50 percent
g [ 90 percent
O ] 95 percent
o —4f MYy = Detection Limt
0.00 T T T T T T T T
0 1 2 3 4 5 6

Vaue of Random Variable
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Results: Fitted Gamma Distribution,

60% Censoring

1.00
2 0.807
E |
o] | ¢ Data Set
g 0.60 — — — Fitted Distribution
% B Confidence Interval
= 0,40 [ 50 percent
g - ] 90 percent
O [ ] 95percent
o0/ Detection Limt
0.00 T T T T T
0 2 3 4 5 6

Vaue of Random Variable

NC STATE UNIVERSITY

Results: Fitted Lognormal Distribution,
No Censoring
1.00
= 0.80 7]
E | Data Set
<] _ ata
s 0.60 _C_D_ Fitted Distribution
‘% i Confidence Interval
2 0407 [ 50 percent
3 [] 90 percent
0.20 [ ] 95 percent
0.00 T T T T T T T
0 2 3 4 5 6
Value of Random Variable
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Results: Fitted Lognormal Distribution,
30% Censoring

R o e —
> 080
3
Q
g 0.60- ¢ Data Set
m — — — Fitted Distribution
% Confidence Interval
g 0.40 - I 50 percent
o] [] 90 percent
© 1 95 percent

o.20—4 /iy = Detection Limt

0.00 % T T T ‘ T T

0 1 2 3 4 5 6

Vaue of Random Variable
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Results: Fitted Lognormal Distribution,
60% Censoring

) B e T ———
> 0.80
E
S 0.60 ! -
o — — Fitted Distribution
g Confidence Interval
% 0.40 I 50 percent
£ ] 90 percent
)
O ] 95 percent

0.20 4 --—- Detection Limt

0.00 4 T T T T T

0 1 2 3 4 5 6

Value of Random Variable
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Results for Test Case 1:
Gamma Distribution

Censoring percentage 0% 30% 60%
Number of non-detected data 0 6 12
Number of detected data 20 14 8
Total Data Points 20 20 20
Best estimate 1.07 1.06 1.10
Vean 2.5" percentile 0.64 0.65 0.61
97.5" percentile 1.74 1.69 1.71
Width of 95% C.I. 1.10 1.04 1.10

NC STATE UNIVERSITY

Results for Test Case 1:
Lognormal Distribution

Censoring percentage 0% 30% 60%
Number of non-detected data 0 6 12
Number of detected data 20 14 8
Total Data Points 20 20 20
Best estimate 1.01 1.00 0.97
Vean 2.5" percentile 0.65 0.63 0.51
97.5" percentile 1.51 1.53 1.52
Width of 95% C.I. 0.86 0.90 1.01
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Results of Relative Uncertainty for Case 1

» For gamma distribution with 30% censoring,
the relative uncertainty in mean is
approximately —39% to +60%

 For lognormal distribution with 30% censoring,
the relative uncertainty in mean is
approximately —37% to +53%

NC STATE UNIVERSITY

Results: Comparison of Gamma and
Lognormal, No Censoring for Case 1

0.8 1

0.6 1 e data set

04 1 fitted gamma distribution

fitted lognormal distribution

Cumulative Probability

0.2 4

0 1 2 3 4 5 6

Value of Random Variable

Mean: data = 1.02, gamma = 1.07, lognormal = 1.01
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Comparison of Mean Estimated by MLE
and Conventional Approaches for Case 1

c . Detected | Replacing Censored Data With MLE
ensoring | "5 -
Only Zero DL/2 DL Gamma | Lognormal
0% 1.02 1.07 1.01
30% 1.35 0.95 1.01 1.08 1.06 1.00
60% 1.97 0.79 1.03 1.28 1.10 0.97
~— /
—

No estimate of uncertainty is available

NC STATE UNIVERSITY

Test Case 2

» 20 synthetic data points were generated
from a gamma distribution (mean =1 and
standard deviation = 1)

« assign 0%, 30% and 60% censoring

 Gamma distribution were fit to the censored
empirical bootstrap samples
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Comparison of Mean Estimated by MLE
and Conventional Approaches for Case 2

Detected Replacing Censored Data With
Censoring Points Zero DL/2 DL MLE
Only
0% 1.05 1.04
30% 141 0.99 1.04 1.08 1.02
60% 2.04 0.81 111 1.23 1.00

Nl )
Y

No estimate of uncertainty is available

NC STATE UNIVERSITY

Uncertainty Results from MLE/Bootstrap
Method for Test Case 2

Censoring Percentage 0% 30% 60%
Best estimate 1.04 1.02 1.00
2.5" percentile 0.62 0.60 051

Mean i -
97.5" percentile 1.56 1.55 1.58
Width of 95% C.I. 0.94 0.95 1.06

* For 0% censoring, the relative uncertainty in mean is

approximately -40% to +50%

* For 30% censoring, the relative uncertainty in mean is

approximately -41% to +52%

* For 60% censoring, the relative uncertainty in mean is

approximately -49% to +58%
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Example Case of Arsenic Emission Factor

» Case study: arsenic emission factor from coal
combustion source

» 29 data points including 3 censored values

» Each censored data point has a different
detection limit

* Some detected data values are less than some
detection limits

» There is uncertainty regarding the empirical
cumulative probability of such detected data
values

NC STATE UNIVERSITY

Results of Example Case: Lognormal
Distribution Fitted to Censored Data

1.00
2 1
g 0807
Q -
[ — — Fitted Distribution
% 0.60 Confidence Interval
= b . . [ 50 percent
T 040 ! ! [ 90 percent
g i f [] 95 percent
3 0204 —-— Detection Limt
- — Range of Cumulative Probability
0.00—F=— - —r T T
10 107 10 10° 10! 10° 10°

Arsenic Emission Factor (0.0001lb pollutants/ton coal combusted)

» The 95 percent confidence interval for the mean is —-91%
to 264% of the mean value (8.2 10+ Ib arsenic / ton coal
combusted)
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Conclusions

* MLE is an asymptotically unbiased method for
estimating the mean of censored data

» Successfully applied MLE to multiply censored data

» Successfully demonstrated quantification of
uncertainty in the mean of censored data based upon
bootstrap simulation

» Estimated variability and uncertainty in censored part
of the distribution

* If mean is above the the detection limit(s), the
uncertainty of the mean is not very sensitive to
variation in the detection limit(s).

NC STATE UNIVERSITY

Acknowledgements

» The authors acknowledge the support of the
Science to Achieve Results (STAR) grants
program of the U.S. Environmental Protection
Agency, which funded this work under Grant No.
R826790. Although the research described in this
presentation has been funded wholly or in part by
the U.S. EPA, this presentation has not been
subject to any EPA review and therefore does not
necessarily reflect the views of the Agency, and
no official endorsement should be inferred

69



H. Christopher Frey and Junyu Zheng Annual Meeting Workshop
North Carolina Sate University December 2002 of the Society for Risk Analysis

Quantification of Variability and
Uncertainty Using Mixture Distributions:
Evaluation of Sample Size, Mixing Weights
and Separation between Components

NC STATE UNIVERSITY

Junyu (Allen) Zheng, Ph.D
H. Christopher Frey, Ph.D

Department of Civil Engineering
North Carolina State University
Raleigh, NC 27695

NC STATE UNIVERSITY

Overview: Mixture Distribution

* Motivations and definition

» Methodologies for quantifying variability and
uncertainty based upon mixture distributions

» Properties of quantification of variability and
uncertainty with respect to variation in sample
size, mixing weight and separation between
components

» Example case study
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Motivation: Mixture Distribution

 Single component distributions might not well
describe the variation in a quantity

» Population distribution of a random variable is a
mixture of distributions

» The use of single component distributions that are
poor fits to data could potentially lead to bias in
variability and uncertainty analysis.

NC STATE UNIVERSITY

Definition: Mixture Distributions

f(x) = wf(Xa,)+ Wiy (Xa,) +=x+ W f(Xa,)

With w, >0 for j=1,..,k
And W1+Wz+’°°<+Wk=1
Where

f(x)  Probability density function for a mixture model
fj(X|qj) Probability density function (PDF) for a component
w, The mixing weight
q; Vector of parameters for a component

* Presently focus on two component Mixture Lognormal

Distributions ~ f(X)=wf(X) + (1- w)f,(x)
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Parameter Estimation: Mixture Distribution

» Maximum Likelihood Estimation (MLE)
— MLE is widely used due to its relative efficiency and generality

n n ]k U
L=8 In[f (x[w,ms)]=& Ini § w;f;(x|ms )y
i=1 i=1 1 j=1 p

k

Where: aw-=1
j=1
n: The number of data points
k: The number of components in a mixture distribution
L: Log-likelihood function

m.s;: The parameters in the j" component in a mixture
distribution

NC STATE UNIVERSITY

Parameter Estimation: Mixture Distribution

» Procedures to find an approximate solution of
the likelihood function in the M [E

—EM algorithm
—Newton-like Metho @
—NMonlinear optimization metho d
* Nonlinear optimization method was chosen
—Sraightforwar d
—Does not require calculation of @rivatives of
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Quantification of Uncertainty and Variability:
Mixture Distribution

« Pecify mixture astribution: specifying w;, g
* Represent the mixture dstribution as an empirical
CDF
» Use empirical CDF as assume dpopulation
dstribution for parametric simulation
» Bootstrap simulation
—Method for generating bootstrap samples
—Methods for forming confidence intervals

NC STATE UNIVERSITY

Quantification of Uncertainty and Variability:
Mixture Distribution

* Method for generating bootstrap samples
— Sampling algorithm based upon the empirical distribution
was used

* Methods for forming confidence intervals

— Percentile Method
» Easy to use
» @ly first-order accurate

— BC_Method (Bias Correction and Acceleration )
»  transformation respecting
»  second-order accurate
»  heavy computation load
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Properties: Study Design

e Sample size: 25, 50 and 100
* Mixing weight: 0.1, 0.3 and 0.5

» Separation between components: 1s, 2s, 4s, 10s

1
1s

0.8 1
0.6 1 ><
0.4 4
0.2 4

0 T T

0 0.5

1 15 2 25 3 3.5

NC STATE UNIVERSITY

Study Design (Cont'd)

4s

0.8 -

0.6

0.4 -

0.2

108 synthetic datasets which cover the variation
in mixing weight, sample size and separation were
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Use of Single Distribution: Separation=2s
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Parameter Dependency ( Hig thy Separated)
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Example Case Study: Fitted Normal
Distribution

1 Fitted Normal
Distribution
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Example Case Study: Fitted Lognormal
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Example Case Study: Fitted Weibull

Distribution
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Probability Band (Normal Distribution)
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Probability Band (Lognormal Distribution)
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Probability Band (Weibull Distribution)
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Probability Band (Mixture Lognormal Distribution)
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Uncertainty in t le Mean (B=500)

Digribution . Rdaive
Type Absolute Uncertainty Uncertainty*
25%([L,U°> Men[L,U”  975%[L,UP° ()% (H%
Mixture® 475 [468,483] 504 [501, 506] 532 [530,535]  -5.6 5.7
Norma  466[463,468] 505[504,506] 545[543,548]  -7.7 7.9
Lognormal 466 [464,469]  505[504,505] 546 [543550]  -7.7 8.1
Weibul ~ 467[465469] 506[505,506] 543[542,545  -7.7 7.3
*: Negative Random Error= (25" Percentile—Mean)/Mean,
Positive Random Error=(97.5" Percentile -Mean)/Mean
& Two component mixture lognormal distributions
[L, U] Lower bound and upper bound (based upon 10 smulations)
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Uncertainty in t le 95% Percentile of Variability
(B=500)

Digtribution

Type Uncertainty

25%[L,U® Mean[L,UP°  97.5%][L, U]"
Mixture®  581[578,584] 638[631, 645 750[739,762
Norma 635[633,638] 701[699, 702] 768[765,772]
Lognormad  627[623,633] 713[711, 714] 813[808,819]
Weibull 627[624,631] 692[691, 693] 778[770,785]
“ Two component mixture lognormal distributions
[L, U]b: Lower bound and upper bound (based upon 10 simulations)

The observed data at the 95% per centile of empirical CDF
is612.6

NC STATE UNIVERSITY

Summary and Conclusion

* A method was developed to quantify variability and
uncertainty based upon mixture distribution

» Bootstrap simulation results tend to be more stable
normally for larger sample size

* When two components are well separated, the
stability and accuracy of quantification of variability
and uncertainty are improved

» Typically, there is greater uncertainty regarding
percentile of mixture distributions coinciding with the
separated region

* When two components are not well separated, a
single distribution may often be a better choice
because it has fewer parameters and higher
numerical stability
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Summary and Conclusion (Cont’d)

» Dependencies may exist in sampling distributions of
parameters of mixtures and are influenced by the
amount of separation between the components

* The case study results indicate that a mixture
lognormal distribution is a better fit to the selected
case compared to single distributions

* The mixture distribution has potential to yield more
efficient statistical estimates.

* Mixture distributions should be considered and
evaluated in situations in which single component
distributions are unable to provide acceptable fits to
the data, or in situations in which it is known that the
data arise from a mixture of distributions

NC STATE UNIVERSITY
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Quantification of Variability and
Uncertainty with Known Measurement
Error

NC STATE UNIVERSITY

Junyu (Allen) Zheng, Ph.D
H. Christopher Frey, Ph.D

Department of Civil Engineering
North Carolina State University
Raleigh, NC 27695
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Overview: Measurement Error

e Motivation

* Measurement error and uncertainty
» Classification of measurement error
 Measurement error models

e Error free data construction

* Quantification of variability and
uncertainty with measurement error

* Properties of solutions for variability and
uncertainty via a case study
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Motivation

* Measurement errors affects all statistical
analysis, both formal and informal because it
causes the probability distribution that
generates the observed data to deviate from
that which generates unobservable, error free
data (Chesher, 1991)

» Potentially brings bias into variability and
uncertainty analysis

NC STATE UNIVERSITY

Measurement Error and Uncertainty

* Measurement Error
— The deviation of the result of measurement from
the true value of the measurable quantity
(Dieck,1992)
* Uncertainty of Measurement
— An interval within which a true value of a
measurement lies within a given probability
(Rabinovich, 1999)
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Classification of Measurement Error

e Causes of Error (Rabinovich, 1999)
— Methodological error
— Instrument error
— Personal error
» Properties of Error (Ellis, 1966; Barford, 1985)
— Systematic error
— Random error

NC STATE UNIVERSITY

Measurement Error Models

* Additive Model
Zi=Xi+@
Where: Z; = error contaminated data, observed data
X; = error free data (true value)

e, =Measurement error, often be assumed
as a normal distribution with mean 0

*  Multiplicative model
z,=X¢
- Multiplicative model can be log-transformed into
the additive model
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Quantification of Variability and Uncertainty:
Error Free Data Construction

. Deconvolution Method
—  Assumption
»  Known measurement error
»  Additive measurement error models

=0« - X

z

f (e) = PDF for the measurement error, often assumed
as a normal distribution

f,(z) = PDF for the observed data set
f(X) = PDF for the error free data

—  Potential Problems
»  Complicated mathematical inferences and computations

»  Not a common probability distribution for the f(x), potential
difficulties in sampling algorithms

NC STATE UNIVERSITY

Quantification of Variability and Uncertainty:
Error Free Data Construction

. Alternative Approach
—  Assumption

»  Known measurement error and variance of the measurement
error is less than variance of the observed dataset

)A(i =cz,+(1- 0z

Where:
X, = Estimated error free data
Z, = Observed or error contaminated data
Z = Sample mean of error contaminated or observed data
¢ = Constant; can be found by:

— 2 2
c= 2B (S2>s2)
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Quantification of Variability and Uncertainty wit h
Known Measurement Error

» Bootstrap pair technique

Z'=(x', 8" = X+ 6 (i=1,2,..B; j=1, 2,...n)
Where:

B = The number of bootstrap replication

n = The sample size of a dataset

X;;= A random sample from a distribution
describing error free data

e,; = Arandom sample from a distribution
describing measurement error
* Two-dimensional framework for characterizing
uncertainty due to random sampling error

* Incorporation of the uncertainty from measurement
error

NC STATE UNIVERSITY

Case Study

* Purpose
— To demonstrate the use of the methods

— To investigate the effect of the size of measurement errors
on the variability and uncertainty estimates

e Study design

r= =
S Total
Where:

S. = Standard deviation of measurement error
Sro" Standard deviation of the observed error-
contaminated data set

— A synthetic dataset with mean of 07.3, standard deviation
of 60.9 and sample size of 25

— Measurement error models: N(O, D)(r=0. 8), N(20)(r=0.33),
N(40)(r=0.66), N(55) (r=0.90)
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Fitted Distributions to t I Error Free Datasets
and t le Observed Dataset
1
= o84 S T 6=10(r=0.16)
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206"
- 6= 40 (=0.66)
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g
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Cumulative Probability

Cumulative Probability

Measurement Error Model: N(0.0, 10.0)
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Probability Band for

Measurement Error Model: N(0.0, 20.0)
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Probability Band for
Measurement Error Model: N(0.0, 40.0)

Cumulative Probability

Cumulative Probability
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Probability Band for
Measurement Error Model: N(0.0, 55.0)
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Sampling Distributions for t e Mean under
Different Measurement Error Models.

1
£ osl | 0=10
g 6=20
° 06
% 6=40
=
B 04 6="55
g
3 0.2 1 | —— Observed Dataset
O T T T T
50 70 0 110 130 150
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Uncertainty in t i Mean under Different
Measurement Error Models.

Confidence Intervas for Confidence Intervas for

Meen (Random Sampling Mean (Both Random
Measurement Andyss Error only) Sampling and
Error model Method ® Measurement Error)

2.5% Mean  97.5% 25% Mean 97.5%
Andytic 834 107.3 1324 834 1073 1324

N(00,00) Numerical 85.8 107.3 1320 858 1073 1320
N(0.0, 10.0) AndyFic 83.7 107.3 1321 834 1073 1324
' Numerical 86.4 107.2 1323 858 1072 1324
N(0.0, 20.0) AndyFic 84.7 107.3 1311 834 1073 1324
' Numerical 87.4 107.5 1314 849 1072 1323
N(0.0, 40.0) AndyFic 89.3 107.3 1263 834 1073 1324
' Numerical 90.8 107.3 1263 841 1073 1322
N(0.0, 55.0) Andytic 97.0 107.3 1181 834 1073 1324

Numerica 975 107.3 117.7 84.2 107.4  130.7
Note: Theresultslisted here are the average vaues of 10 different Smulations for each case.

*: Random sampling error and measurement error are not separated for this case.

& Andyticd solutions are based upon central limit theorem; numerical solutions are estimated from bootstrap
smulation.
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Summary and Conclusion

» A method is developed for constructing an error free
data set based on the observed data set

» Demonstrates methods for improving the
characterization of variability and uncertainty if there
are known measurement errors in environmental data

» There exist substantial bias in the estimates of true
variability if measurement error is substantial

» Uncertainty will be underestimated if uncertainty
arising from measurement error is subtracted not
characterized

NC STATE UNIVERSITY

Summary and Conclusion (Cont’'d)

* No substantial difference among 95% confidence intervals
and sampling distributions for the mean for the observed
data set and the error free data sets if the contribution
from measurement error to the total uncertainty is
considered

* To get an unbiased estimate of true variability, it is
necessary to separate measurement error from the

observed variability.
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Outline

* Introduction
*  Quantification of variability

*  Quantification of uncertainty in a single component
distribution

* Introduction to AuvTool

*  Quantification of variability and uncertainty in censored
datasets

*  Characterization of variability and uncertainty based
upon mixture distributions

*  Characterization of variability and uncertainty with
known measurement error

NC STATE UNIVERSITY

Discussion and Questions
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