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10 INTRODUCTION

The need for the use of quantitative methods for characterizing variability and uncertainty
in exposure and risk assessment has received increasing atention in recent years (e.g., Bogen
and Spear, 1997; Morgan and Henrion, 1990; Frey, 1992; Hoffman and Hammonds, 1994; Frey
and Rhodes, 1996; Helton, 1996; NCRP, 1996; EPA, 1997). This report documents the technical
basisfor a new software tool, AuvTodl, that enables an andyst to quantify variability in adata
set and to quantify uncertainty in key statistics of the data set. The software was devel oped
specificaly to support the Stochastic Human Exposure and Dose Smulation (SHEDS) model
that is being developed by the U.S. Environmentd Protection Agency (EPA). However,

AuvTool was developed as a stand-alone module. Therefore, it can be used for other analyses as
well.

In the next section, the concepts of variability and uncertainty are presented. A brief
review of some illudrative examples of probabilistic anayses, in which the digtinction between
variability and uncertainty was made, is provided in Section 1.2. Key insights and benefits that
accrue as aresult of probabilistic andysis are identified in Section 1.3. The SHEDS modd is
briefly described in Section 1.4, including the need for a new software tool to quantify both
variability and uncertainty in the inputs to the modd. Available software tools are reviewed in
Section 1.5, including both commercid and research programs. The need for new software to
support SHEDS is established in Section 1.6. The objectives of this project, and an overview of
this report, are given in Sections 1.7 and 1.8, respectively.

1.1  Variability and Uncertainty
The digtinction between varigbility and uncertainty in the context of human exposure and

risk assessment has been described by Bogen and Spear (1987), Frey (1992), Hoffman and



Hammonds (1994), NAS (1994), Frey and Rhodes (1996), NCRP (1996), EPA (1996, 1997),
Cullen and Frey (1999), and others.

Vaiability refersto red differencesin the vaues of aquantity from oneindividud to
another or over some other population. For example, a given human individua has a body
welght, intake rate, lifetime, exposure duration, and activity patterns that are different from that
of other individuas. Uncertainty refersto lack of knowledge regarding the true value of a
quantity. Asnoted in NAS (1994), the implication of varigbility in risk assessment is captured
by the notion that there is a certainty that different people have different exposures and different
risks. Therefore, in developing risk management strategies that are intended to be protective of a
subgtantia portion of the population, it isimportant to understand the varigbility of risk within
the population. For example, the notion of a high end exposure as embodied in the 1992
Exposure Assessment Guiddines (EPA, 1992), implies the need to quantify exposures to the
90th percentile or higher of the population. 1n order to quantify exposures for a given percentile
of the population, one must account for inter-individud varigbility.

In contrast to the notion of variability as defined in the exposure and risk assessment
community, uncertainty refersto lack of knowledge regarding the true but unknown value of a
quantity. The smplest example of uncertainty arises when an atempt is made to measure a
quantity whose true vaue is a Sngle unchanging vaue. The measurement instrument is typicaly
imperfect, perhaps because of errorsin calibration, spectra interference, inability to fully control
al other factors asde from the one being measured, difficultiesin obtaining a representetive
sample, or for avariety of other reasons (e.g., Mandd, 1969; Morgan and Henrion, 1990; Cullen

and Frey, 1999).



If measurements are made repeatedly with the same ingtrument, it istypicaly the case
that there will be some random variation in the observed values even if the true but unknown
vaueis a congant (e.g., Henrion and Fischoff, 1986). The random variation in the measured
vaues can be used to infer a probability distribution that represents the range and rlative
likelihood of the measurements. If the measurement method is known to be unbiased, then the
average of the observations will converge to the true but unknown point value as the number of
measurements becomes large. Therefore, an analyst may infer that the true but unknown value
of the quantity being measured is enclosed by the range of values observed in repeated
measurements. |f the measurement method is known to be biased, then the method is said to be
inaccurate. In this case, the average of repeated measurements does not converge to the true but
unknown vaue. The difference between the mean of many measurements and of the true, but
unknown value, isthe bias. If the biasis known, such as based upon repeated measurements of a
known sample, then a bias correction can be applied to the observations to produce amore
accurate estimate of the true, but unknown, value.

The dispersion of repeated observations above or below the mean observation is related
to the precison of the measurements. A highly precise measurement method will produce atight
cluster of observations close to the mean observation. An imprecise method will have alarge
deviation of individua observations with respect to the average observation. A measurement
method may be very precise but inaccurate, in that there may be atight clustering of observations
about the mean of the observations, but the mean of the observations may differ substantialy
from the true but known value. Alternatively, a measurement method may be very accurate but
highly imprecise, in which the mean of the obsarvationsis equd to the true but unknown value

but where there is alarge deviance of vaues with respect to the mean. Other combinations, such



ize of the random sample
of the dataincrease, and if dl other factors are the same (e.g., the variance of the random sample
of the data) the width of the confidence interva will decrease. Therefore, more data typically

trand ate into more knowledge relevant to inferring the true but unknown quantity. In thiswork,



confidence intervas are interpreted as in indication of the precison with which adatidic is
known.

Another key source of uncertainty is the potentia lack of representativeness of data
Very often in human exposure and risk assessment, data for the quantities of direct interest are
not available, and surrogate data are used instead. For example, data regarding dietary
consumption patterns of specific foods may not be available for specific subpopulations, such as
fish consumption for subsistence fisherman. In such cases, an andys might use fish
consumption data for the generd population as a bas's upon which to make ajudgment regarding
the presumably higher fish consumption rate of the specific subpopulation. The most common
concern with the use of surrogate datais that it may be biased. EPA (1999a) addresses issues
and methods associated with the use of surrogate data as a basis for developing input
distributions for probabilistic assessment.

Lack of datais an obvious source of uncertainty. In some cases, there may be little or no
data available for the quantity of interest or for sufficiently relevant surrogetes. Data andysisis
an insufficient approach for quantifying ether variability and/or uncertainty in such a quantity.
However, andogies with other data sets or judgments based upon established theory may serve
as abasis for making bounding assumptions or even probabilistic assumptions regarding such
quantities. In this gtuation, methods for dliciting expert judgment and for encoding the judgment
in the form of subjective probability distributions can be used (e.g., Cooke, 1991; Kaheman and
Tverski, 1982; Morgan and Henrion, 1990).

Finaly, other sources of uncertainty include modd formulation and specification of the
scenarios to be andyzed. A modd isasmplified representation of ared system.

Smplifications used in modd development include aggregation and excluson. Aggregation



refersto lumping detalls of the red world system into asingle quantity. For example, inan air
quality model severa chemical pecies with common characteritics, such as ddehydes, may be
amulated asif they were asngle "lumped" chemicd that has important characterigtics
consdered common to al adehydes, but that may not capture differences considered less
important among the aldehydes. Exclusion refers to ignoring some aspects of the red world
system in developing the modd. For example, in an air quality mode, some chemica
compounds that may be potentidly important to the formation of secondary pollutants may be
excluded, ather intentiondly or unintentionaly, from the moded. Cullen and Frey (1999)
introduce many concepts relevant to modeling and modd uncertainty. One approach for
addressing mode uncertainty is to compare predictions made with aternative modds. For
example, Evans et d. (1994) present a probability tree in which dternative conceptual modes
areincluded.

Scenario uncertainty refers to the possible failure to specify a scenario or a set of scenario
that actually captures the real world problem that an analyst wishesto address. For example, if
the intention is to estimate risk to humans because of human exposure to hazardous air
pollutants, a scenario based only upon direct inhalation exposure to pollutants emitted from
nearby sources may fail to capture the most important Situations. Perhaps long-range transport is
more important than short-range trangport, implying that the andyss should have included a
larger geographic area of emission sources. Perhaps indirect exposure pathways, such asfood
ingestion, are redly the means by which humans are exposed to some of the HAPS, which may
have undergone deposition and uptake by biologica receptors (e.g., fish, plants). A key
congderation in reducing scenario uncertainty isto perform a screening andysisto identify

which exposure pathways are most important.



This report focuses on methods for characterizing uncertainty based upon random
sampling error, which yields ingght into the precision of the estimate for a datistic such asthe
mean, standard deviation, or parameters of adistribution fit to a data set describing inter-
individud variability. Inthe andyss of such data, an implicit assumption isthat the data are an
unbiased, random, representative sample of the quantity of interest. EPA (1999a) suggests
methods for making adjustments to digtributions for inter-individud variability if non
representativeness or other sources of bias are believed to be present. While uncertainty
associated with measurement error can be sgnificant in some cases, this source of uncertainty is
not addressed at thistime in the development of AuvTool. While expert judgment is not
explicitly addressed by AuvTool asabasis for specifying subjective probability distributions,
many of the parametric distributions that are commonly used to represent expert judgments, such
as the uniform, symmetric triangle, beta, norma, and lognormd, are included in the framework.
It is assumed that the andyst has arelevant model and has devel oped appropriate scenarios.
AuvTool can be used to support development of probabilistic input assumptions for multiple
models and scenarios.

1.2  Examplesof Probabilistic Analysis
The use of probabiligic andys's methods for deding with variability and uncertainty is

becoming more widely recognized and recommended for environmenta modding and
assessment gpplications. The National Research Council and others have recommend that EPA
use quantitative probabilistic andys's methods that distinguish between variability and
uncertainty (NAS, 1994). One of the recommendations of the Emission Inventory Improvement
Program (EIIP), which isjointly sponsored by EPA and other organizatiors, is to encourage the
use of quantitative methods to characterize variability and uncertainties in emission inventories

(Radian, 1996).



EPA has been responsive to these recommendations. For example, EPA has sponsored
workshops regarding Monte Carlo smulation methods, has devel oped a guidance document on
Monte Carlo methods, and has included guidance regarding probabilistic analyssin its most
recent draft of Risk Assessment Guidance for Superfund (EPA, 1996; EPA, 1997; EPA, 1999,
EPA, 1999b). Uncertainty andysisis now part of the planning process for mgor assessments
performed by EPA, such asthe Nationd Air Toxics Assessment.

Recently, the National Research Council released a report on mobile source emissons
estimation that cdls for new efforts to quantify uncertainty in such emissons (NRC, 2000). The
Intergovernmental Pandl on Climate Change (IPCC) recently issues a good practice document
regarding uncertainty andysis for greenhouse gas emission inventories (IPCC, 2000). Thus, the
guantification of variability and uncertainty has become widely accepted not only in human
hedlth risk assessment but aso in supporting or related areas, such as emissons estimation. In
addition, thereis a growing track record of the demonstrated use of quantitative methods for
characterizing variability and uncertainty gpplied to emisson factors, emisson inventories, air
quality modeling, exposure assessment, and risk assessment. Some examples of these are briefly
mentioned here.

There have been anumber of projects amed at quantifying variability and uncertainty in
highway vehicle emissons, including uncertainty estimates associated with the Mobileba
emission factor modd and with the EMFAC emission factor modd used in Cdifornia (Kini and
Frey, 1997; Frey, 1997; Frey, Bharvirkar and Zheng, 1999; Pollack et al.,.1999). Frey and
Eichenberger (1997) and Frey et al. (2001) have quantified uncertainty in highway vehicle
emission factors estimated based upon measured data collected using remote sensing and on-

board instrumentation, respectively. Frey et al. (2002) have recommended modeling methods



for the New Generation Modd (NGM) that will succeed the Mobile6 emission factor modd.
These methods include quantification of unexplained inter-vehide variability and fleet average
uncertanty.

There have been a number of efforts aimed at probabilistic andysis of various other
emission sources, including power plants, non-road mobile sources, natura gas-fired engines,
and specific area sources (Frey, Rhodes, 1996; Frey, Bharvirkar and Zheng, 1999; Frey and
Zheng, 2000; Frey and Bammi, 2002a& b; Frey, and Zheng, 2002; Frey and Bharvirkar, 2002; Li
and Frey, 2002, Abdd-Aziz and Frey, 2002). Probabilistic anlayses have aso been gpplied to air
quality models, such asthe Urban Airshed Modd (e.g., Hannaet al., 2001).

In the area of exposure and risk assessment, there have been anumber of andysesin
which variahility and uncertainty were distinguished. These include, for example, Bogen and
Spear (1987), Frey (1992), Hoffman and Hammonds (1996), Cohen et al. (1996), and others.

As an example of a probabiligtic andyssin which variability and uncertainty were
distinguished, Frey and Rhodes (1996) quantified variability and uncertainty in emissions of
selected hazardous air pollutants from cod-fired power plants. Limited data were available
regarding the concentration of trace species, such as arsenic, in cod, and regarding the
partitioning of the trace species in the mgor process areas of the plant, including the bailer,
particulate matter control device, and flue gas desulfurization system. Parametric distributions
were fit to the available data that represented the inter-unit variability in plant performance.
Bootstrap smulation was used to estimate confidence intervas for the fitted cumulative
digtribution function (CDF) for each input data set. Both variability and uncertainty were
propagated through an emissons model to yield estimates of varigbility in emissions from one

averaging time to another and uncertainty in emissions for any given smulated averaging period.



Two averaging times were conddered: three-day averages and annud averages. Three-day
averages were included because the reported measurements represented plant operation over
goproximately athree-day period. Annua averages were dso smulated because they were of
more direct policy interest, such asin comparing estimated emissions with possible emisson
dandards. Methods for considering measurement error, and for using mixture distributions to
represent variability, were addressed. In addition, methods for identify the key sources of
variability and uncertainty with respect to estimated emissons wereillusirated.

1.3  KeyIndightsfrom Probabilistic Analysis
Asnoted in EPA (1997) and Cullen and Frey (1999), thereis atiered set of quantitetive

andyss methods that can be used in exposure and risk assessment. A starting point for an
assessment typicaly includes wordt-case, bounding, or screening analyses based upon point
estimates and perhaps smplified models. Such andyses are intentiondly biased and are
intended to determine whether, under worst case conditions, an exposure or risk estimate may be
aufficiently smdl that no further action is needed. If an analysis based upon such methods
impliesthat the exposure and risk may be high enough to warrant further attention, then a second
tier of analysiswill typicaly include the use of more redigtic input assumptions and the selection
of more refined models. Probabilistic methods are typicaly used to replace point estimates for
input assumptions as the assessment becomes more refined. With probabilistic input
assumptionsin the form of probability distributions, an analyst is able to characterize the range
of possible vaues and the rdlaive likelihood of vaues within the range, instead of being forced
to choose asingle point vaue. In contradt, if dl inputs to amode are assigned point vaues that
represent worst-case or high-end assumptions, the resulting exposure or risk estimate may be
very high compared to the actua exposures or risks faced by the high-end exposed portions of

the population (e.g., Burmaster and Hattis, 1994; Cullen, 1994; Finkel, 1990).
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Key limitations of point estimates are that they do not provide an indication as to what
fraction of the population have exposure or risk lessthan or equd to that of the point estimate, or
greater than or equd to the point estimate. Therefore, information regarding inter-individud
variability is not adequately characterized. Furthermore, in the point estimate approach,
uncertainty is not quantified. Therefore, no ingght is provided regarding the magnitude of
uncertainty in the estimate or regarding key sources of uncertainty. If risks are over-estimated,
then resources may end up being devoted to risk management Strategies that yield less sgnificant
benefits than if they had been devoted to risk management in other areas. The use of biased point
estimates can lead to inefficient alocation of resources.

A probabiligtic analysis gpproach incorporates more information into the assessment than
does a point estimate gpproach. The relaive range and likelihood of values for mode inputs are
characterized using probability distributions. The didtributions are propagated through the model
using a technique such as Monte Carlo amulation or related variations thereof. For each model
output, both the range and likelihood of possible valuesis estimated. Therefore, decison-makers
gain indght into the magnitude of inter-individua varigbility, including whether there are some
individuas that may be subject to high risks even though many members of the population have
low risk. Ingght regarding the distribution of risks among members of the population is
important in developing effective risk management drategies.  Information regarding
uncertainty in the risk estimate is useful in determining how likdly it isthat a given individud or
portion of the population may actudly face ahigh risk. If the range of uncertainty islarge, it
may be useful to identify key sources of uncertainty. In turn, additiond data collection or
research can be targeted to reduce uncertainty in the model inputs that most contribute to overal

uncertainty in the risk estimate (Thompson and Graham, 1996).
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Variability and uncertainty should be trested separately because they each have different
decision-making and policy implications. Knowledge regarding variability can be used to
identify subpopulations that face the grestest risks, such as children, asthmatics or individuas
with activity patterns that bring them into greeater contact with specific chemicals. Information
regarding key sources of uncertainty can be used to prioritize additiona data collection or
research to improve estimates of exposure and risk. The National Research Council has
recommended that the digtinction between variability and uncertainty should be maintained
rigoroudy & the level of individua components of arisk assessment aswell as a the leve of an
integrated risk assessment (NRC, 1994).

Assummarized in Cullen and Frey (1999), probabilistic analyssis useful when: (a) a
screening level analysis indicates that exposure and risk may be unacceptably high; (b) thereisa
need to identify priorities for collecting additiona information in an effort to reduce uncertanty;
(c) 9gnificant equity issues are raised regarding the inter-individud digtribution of exposure and
risk; (d) there is aneed to identify, and determine how to target resources to reduce risk to
particular subpopulations of highly exposed individuas, (€) there is a need to rank exposures,
pathways, sites, or contaminants taking into account both variability and uncertainty; and/or (f)
when the cost of remediaion or intervention is high. Conversdly, probabilistic andysis may not
be needed in Stuations where a consarvative screening andyss indicates no significant problem
or when the cogts of intervention or remediation are sufficiently smdl that they outweigh the
cogsof anadyss. Another possible but unlikely reason that a probabilistic andysis might not be
needed isif the varigbility and uncertainty are sufficiently narrow that asingle point estimateis

consdered to be rdiable.
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1.4  SHEDSModd, Project Objectives, and Software Needs,
The SHEDS modd, which isbeing developed by EPA's Nationd Exposure Research

Laboratory (NERL), utilizes a probabilistic approach to predicting population exposures to
pollutants. Concentrations of pollutants in various exposure media, as well asthe physica
factors that influence exposure, are input as distributions in the modds. The modd uses atwo-
stage Monte Carlo simulation technique to produce distributions of exposure for various cohorts
(e.g., age groups). Therefore, the SHEDS mode requires that both variability and uncertainty in
the model inputs be characterized. The SHEDS mode involvesin alarge number of model
inputs. For most of these inputs, it is necessary to quantify both variability and uncertainty.
Currently, the characterization of variability and uncertainty for SHEDS mode inputs must be
done off-line. Therefore, thereis aneed for a software tool to support the development of
probabiligtic input assumptions for the SHEDS modd, including characterization of both
varigbility and uncertainty.

The objective of this project was to develop a stand-alone software tool that can conduct
datigica andyss of variability and uncertainty associated with fitting probability distributions
to data sets for use with the SHEDS modeling framework. Secondary objectives were to develop
atool that would be user-friendly, to develop atool so that it could be used for genera purpose
goplications, and to verify the new software through extensive testing of its dgorithms.

In identifying the specific needs for a software todl, it is criticaly important to clearly
determine the specifications for the software, including the input information that will be
provided to the software and the output information thet is needed from the software. The key

gpecifications for the development of a software tool that supports SHEDS include the following:
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1 For each input to SHEDS, either arandom representative data set representing
vaiability will be available, or information will be avallable regarding a
parametric probability ditribution that represents variability.

2. The software must be capable of fitting a parametric probability distribution to
input variables for which random representative data are provided. These
digtributions will represent varidgbility.

3. Graphica techniques basad upon confidence intervals for the fitted cumuletive
digribution function (CDF) and quantitative satistical goodness- of-fit methods
must be available for ng the adequacy of a candidate parametric probability
digribution in representing variability for a data st.

4, Uncertainty in the parameters of the digtribution, and regarding the mean and
standard deviation, will be estimated based upon random sampling error.

5. The software must be capable of performing batch operationsin order to process
information for a potentialy large number of SHEDS modd inputs.

6. Information regarding both variability and uncertainty must be reported in a
format consistent with SHEDS modd input requirements.

Prior to developing a new software toal, it isimportant to determine whether existing

tools are capable of meeting the specific requirements of the SHEDS mode as set forth above.

15 Available Software
A variety of programs have been developed that are capable of various types of

probabilistic analyss. There are severd commercidly available software packages, such as
Crysd Bdl, @Risk, Andyticaand RiskQ. Crystd Bal and @Risk both are Microsoft Exce-
based add-in gprograms (Paisades, 1997; Decisioneering ,2001). Analyticaisasand-done

program for cregting, analyzing, and communicating probabilistic modeds for risk and policy
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andysis (Lumina, 1996). RiskQ isimplemented in Mathematica (Bogen,1992). Capabilitiesto
address both variability and uncertainty are available in Crystad Bal and RiskQ. While RiskQ
has many powerful capabilities, it requires knowledge of programming in Mathematica (Murray
and Burmagter,1993). @Risk and Anayticado not provide convenient capabilities for
gmultaneous andlyss of both variability and uncertainty. Therefore RiskQ, @Risk, and
Analyticawere not gpplicable to the identified needs for supporting the SHEDS modd.

Crydd Bdl uses atwo-stage Monte Carlo smulation method as presented by Cohen et
al., 1996. The method of Cohen et al. (1996) isvery smilar to that of Frey (1992) and Frey and
Rhodes (1996). The primary difference isthat the approach of Cohen et al. (1996) discards
many intermediate values during the smulation. While this can reduce memory or storage
requirements, it o resultsin the loss of useful information. Therefore, this gpproach was not
selected.

Frey (1992) developed case studies illugtrating the distinction between variability and
uncertainty using an earlier verson of Andytica, which was known & that time as Demos.
However, Demos and Analytica are structured to work with one dimension of probabilistic
information. The limitations of Demos and Andytica at thet time motivated the development of
agpecidized software tool. Therefore, Frey and Rhodes (1996, 1998, 1999) developed a
FORTRAN-based program a North Carolina State University referred to as"BOOTSIM."
BOOTSIM featured two-dimensiond probabilistic representations of variability and/or
uncertainty for mode inputs, propagetion of the two-dimensiond probabiligic information
through a modd, characterization of both variability and uncertainty in modd results, and
andysis of modd resultsto identify key sources of variability and uncertainty. BOOTSIM

included a technique for quantifying uncertainty in selected datistics using bootstrap smulation.
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The EPA Office of Air Qudity Planning and Standards (OAQPS) supported the
development of a prototype software tool for Analysis of Uncertainty and Variability in
Emissons Esimation (AUVEE) (Frey and Zheng, 2000). AUV EE was devel oped based on
BOOTSIM. However, BOOTSIM did not contain a capability to fit a parametric probability
distribution to a data set or to compare dternative fitted distributions to data. For AUVEE, a
capability was included to fit parametric distributions to data and to compare the fitted
digribution and the data using a graphical display. Thus, unlike BOOTSIM, AUVEE included a
Graphica User Interface (GUI) and capabilitiesto fit distributions to data. However, because
AUVEE was redtricted to an example case study, it did not have a capable to alow usersto enter
their own data. Furthermore, AUV EE did not include the use of statistica goodness-of-fit tests
nor a batch andysis capability for working with many variables automaticaly.

1.6  Need for New Software
Based upon areview of available software tools, it was established that there was not

exiging software available that could meet dl of the needs for the SHEDS modd. However,
AUVEE contained many of the features that were needed. Therefore, AUV EE was selected as
the basis for developing a new software toal, referred to here as"AuvTool."

In addition to the capabilities of AUVEE, AuvTool introduces new capabilities for the
following: (a) accepts user input in a convenient spreadsheet format; (b) can accommodate input
datafor varigbility in the form of adata set or a specified parametric probability distribution; (c)
additiond options for parametric probability distribution modds and the option of usng an
empirica digtribution based upon resampling of the user- provide data set; (d) calculation of
goodness-of-fit saidics, (€) abatch andys's cgpability for handling many input data sets or
input distributions automaticaly; and (f) output information that meets the requirements of the

SHEDS model. To facilitate amodular gpproach to software development, AuvTool was
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developed using C++. Many of the agorithms of AUV EE were incorporated and were trandated
from FORTRAN into the new software tool.

1.7  Overview of thisReport
The dgorithms used in AuvTool are documented in Chapter 2. In Chapter 3, the system

development and implementation of AuvTool are described in detall, including the desgn
consderations, development environment, structure design and the main function modules.
Chapter 4 summarizes the verifications of results with the use of AuvTool. Anilludrative case
study isgiven in Chapter 5. The case study demondtrates the use of the batch analysis feature of
AuvTool and presents examples of variability and uncertainty anayss results that the new
software can provide. Readersinterested in more detail regarding how to use the AuvTool
software are referred to the accompanying User’s Guide (Zheng and Frey, 2002). Chapter 6

provides a summary, conclusons, and recommendations.
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20 ALGORITHMSUSED IN AUVTOOL

The dgorithms used in the AuvTool software are presented in this section. Seven key
areas for which dgorithms are documented include: (1) visudization of data setsusing empiricd
digtributions; (2) definition of the parametric probabilistic distributions used in AuvTodl; (3)
parameter estimation for the parametric probability distributions; (4) generation of random
samples from probability distribution modes; (5) evduation and sdlection of afitted probability
distribution mode based upon datistica goodness-of-fit tests; (6) characterization of uncertainty
based upon random sampling error using bootstrap smulation; and (7) evauation of dependence
or correlation between dtatigtics of interest, including the mean, standard deviation, and
distribution parameters. Each of these areas are addressed in the following subsections.

2.1  Visualizing Data Using Empirical Distribution
Some of the key purposes of visudizing data sets include: (1) evauation of the centra

tendency and dispersion of the data; (2) visua ingpection of the shape of the empirica
digtribution of the data as a potentid aid in sdecting parametric probability distribution modds
to fit to the data; and (3) identification of possble anomdiesin the data set (e.g., outliers).
Specific techniques for evauaing and visudizing data include calculation of summary gatistics,
and plotting a data set as an empirical Cumulative Digtribution Function (CDF).

Three key characteristics of a CDF areits central tendency, dispersion, and shape. There
are severd measures of centra tendency, which include the mean, median, and mode. The
disperson, or the spread, of adistribution is measured by the standard deviation or the variance
of the digtribution. The relative standard deviation (RSD), dso known as the coefficient of
variation (CV), isthe standard deviation divided by the mean. For anon-zero mean, the CV
provides a normaized indication of the disperson of datavaues, with alarge CV indicating

relatively large variahility in the data set. The shape of the digtribution is reflected by quantities
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Figure2-1. Plot llludrating the 95 Percent Probability Range on a Cumulative
Didtributiion Function.

such as skewness and kurtosis. The skewness is the asymmetric of a distribution, and the
kurtosis refers to the peakedness of adigtribution. These statistics can be used to ad in the
selection of a parametric probakility digtribution mode to fit to the data (Cullen and Frey, 1999).

A CDF isareationship between “cumulative probability” and values of the random
variable. Cumulative probability is the probability that the random variable has vaues less than
or equd to a specific numerical vaue of the random variable. CDFs provide ardationship
between fractiles and quantiles. A fractileis the fraction of valuesthat are less than or equd to a
gpecific vaue of arandom variable. Fractiles expressed on a percentage basis are referred to as
percentiles. A quantile isthe vaue of arandom variable associated with a given fractile (Frey,
Bharvirkar and Zheng, 1999). For example, the range of data values enclosed by the 0.025 and
0.975 fractiles (2.5 and 97.5 percentiles) is often of particular interest, sSnce this provides an
indication of the dispersion of a distribution as reflected by the 95 percent probability range of
vaues. Anexample of aCDF isillugtrated in Figure 2-1

Empiricd estimation of afractile from deta requires rank ordering of the data. There are

severd possible methods for estimating the percentile of an empiricaly observed data point.
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Figure 2-2. Example Graph of Visudizing Data Using the Hazen's Plotting Position
Method (n=10)

These methods are referred to as * plotting positions.” The plotting position is an estimate of the
cumulative probability of a data point. As described by Cullen and Frey (1999), Harter (1984)
provides an overview of the various types of plotting positions.

A commonly used plotting position, proposed by Hazen (1914), isused in AuvTool for
displaying data points in comparison to fitted parametric ditributions:

F,(x)=Pr(X <>g):£,fori:1, 2,..,nandx; <Xz <...<Xp (2-1)
n

where,
i = Rank of the data point when the data set is arranged in an ascending order
n = number of data points
X1 < X2 < ... <X, aedaapointsin the rank-ordered data set
Pr(X<x;) = Cumulative probability of obtaining a data point whose valueis less
than x;

An example graph of visudizing data usng the Hazen' s plotting position method is

shown in Fgure 2-2. The figure depicts the plotting position of each of 10 data pointsfor a

smdl data st
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2.2 Definitions of Probability Distributions
Probability distribution modes used in AuvTool include the normd, lognormal, Weibulll,

gamma, beta, uniform, symmetric triangle parametric distributions and empirica digtribution.

Ang and Tang (1984), Hahn and Shapiro (1967), Morgan and Henrion (1990), Cullen and Frey
(1999) and others review the theoretical basis underlying each of these distributions. The normal
and lognormal distributions have an underlying theoretica basisin the centrd limit theorem

(CLT) when gpplied to additive or multiplicative processes, respectively. For example, a process
of pollutant disperson generated by the sum of many random variations can be described by the
Gaussan plume mode (Seinfeld, 1986). Although the normd distribution is not gppropriate for
representing non-negative quanitities because it has an infinite negative tail, it is often used to
represent non-negetive quantities, such asweight or length, so long as the coefficient of variation
is less than about 0.2 (Morgan and Henrion, 1990).

Thelognormd, gamma and Weibull distributions are useful for representing norr
negative and postively-skewed data. The two-parameter beta distribution is bounded by zero
and one, and has flexihility to represent data with avariety of centra tendency and skewness.
The uniform and symmetric triangle distributions are most commonly used to represent expert
judgments made in the absence of data. Empirica digtributions can be used instead of parametric
digributions. A comparison of empirical and parametric digtribution is described in EPA
(1999a) and in Section 2.3.

More discussion of distribution selection criteria can be found in Hahn and Shapiro
(1967), Ang and Tang (1984), Morgan and Henrion (1990), Hattis and Burmaster (1994), and

Alvarez (1996), and Cullen and Frey (1999), among others.
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Inx 1S the mean of theInx, and &inx isthe
standard deviation of Inx e shape parameters, and B(a,a) is
the beta function. For the gammadigtribution, &is the shape parameter, aisthe scae parameter,
and A(- ) isthe gammafunction. For the Weibull distribution, k is the scale parameter, and ¢ is
the shape parameter. For the uniform digtribution, aand b are the smalest and largest possible
vaues. For the symmetric triangle distributions, aand b determine the range within which the

vaiable can vary.
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(n=10)

2.2.2 Empirical Distribution

An empiricd digtribution is defined as a discrete distribution, F, that gives equa
probability, 1/n, to each vaue x; in the dataset, x (Efron, 1979). The CDF for thisfunctionis
therefore a step function of origind data set, X, where each vaue x; is assgned acumulative
probability of i/nfori={1,2,...n}. Anexample of an empirica distribution representing a step
function is provided in Figure 2-3.

2.3  Parameter Estimation of Probability Distributions
A probability distribution modd is a description of the probabilities of al possible vaues

in asample space. A probability distribution modd is typically represented as a PDF or a CDF
for a continuous random varigble. The PDF for a continuous random varigble indicates the range
and relative likelihood of values. The CDF is obtained by integrating the PDF (Cullen and Frey,
1999).

Probability distribution models may be empirica, parametric, or combinations of both. A
parametric probability distribution modd isamodd described by parameters. The power of
using parametric probability distribution modds isthat data sets, which may contain large

numbers of data points, can be described in a compact manner based on a particular type of
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parametric distribution function and the vaues of its parameters. For example, anorma
digribution isfully specified if its mean and andard deviation are known. Another potentia
advantage of parametric probability distributions compared to empiricd digtributionsisthet it is
possible to make predictionsin the tails of the distribution beyond the range of observed data. In
contragt, usng conventional empirical digtributions, the minimum and maximum values of the
digribution are limited to their minimum and maximum values, respectively, of the data s&t.

These vaues typicaly change as more data are collected. EPA (1999a) presents a discussion of
the use of empirical verse parametric distributions.

Based upon visua ingpection of an empirical distribution of data as described in Section
2.1, and consderation of processes that generated the data, the analyst can make a judgment
regarding sdection of one or more candidate parametric digtributions to fit to the data set. Once
aparticular parametric distribution has been sdected, akey step isto estimate the parameters of
the digribution. The method of Maximum Likelihood Estimation (MLE) and the Method of
Matching Moments (MoMM) are among the most typica techniques used for estimating the
parameters.

In order to estimate vaues of the parameters of a parametric probability distribution,
datistical estimation methods must be used. Using such estimation methods, inferences are made
from an available data set regarding asingle best estimate of the parameter vaues. Usudly,
there are aternative methods available to estimate parameter values. Thus, it is necessary to
choose a parameter estimation method. Small (1990) has discussed the following Six desirable
characterigtics of estimators. These characterigtics are useful when comparing and sdecting an

egtimation method:
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Congistency: A consgtent estimator convergesto the “true’ value of the parameter asthe
number of samples increases.

Lack of Bias: On average over many gpplications to many different data sets, an unbiased
esimator yields an average vaue of the parameter estimate that is equd to
that of the population vaue.

Efficency: An efficient estimator has minimum variance in the sampling digtribution of
the estimate. A sampling didtribution is a probability distribution for a
gatigtic (e.g., mean, Sandard deviation, distribution parameters).

Sufficiency:  An estimator that makes maximum use of information contained in a deta
st issad to be sufficient.

Robustness. A robust estimator is one that works well even if there are departures of the
data from the underlying distribution. In other words, such as estimator will
yield reasonable vaues of the parameters even if there are some anomalies
in the data Set.

Practicality: A practical estimator is one that satisfies the needs for the preceding five
characterigtics while remaining computationdly efficient.

For smal sample sizes, the MLE method does not dways yield minimum variance or
unbiased estimates (Holland and Fitz Smmons, 1982). However, for larger sample sizes, the
MLE method tends to better satisfy the firg five criteriafor satistica estimation than other
methods. Compared to MLE, MoMM estimators tend to be more robust but less efficient. MLE
can be extended to estimate parameters for distributions fitted to censored data. In the present

study, both MLE and MoMM are included as options for estimation of parameters of parametric
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probability digtributions. The MoMM and MLE methods are described in more detall in the next
subsections.

2.3.1 Method of Matching M oments
MoMM is based upon matching the moments or centrd moments of a parametric

digribution (e.g., mean, variance) to the moments or centrd moments of the data set. MoMM
estimators are often but now aways easy to caculate. Therefore, this method is often the most
draightforward to implement. Thus, it typicadly satisfies the criterion of practicdity. For
example, there are convenient solutions for MoOMM parameter estimates for the normd,
lognormal, gammea, and beta distributions (Hahn and Shapiro, 1967), as wel asfor the uniform
and symmetric triangle digtributions. However, MoMM may not fully satisfy the other criteriaas
previoudy noted. In the following sections, the MoMM estimators for each of the parametric

distributions are presented

2.3.1.1 Normal Distribution
Asdefined in Table 2-1, the parameters for the norma distribution are the arithmetic

mean, i, and the arithmetic variance, 6. The MoMM estimator of the mean is the sample mean,
X. The MoMM estimator of the variance is the unbiased sample variance, s (Morgan and

Henrion, 1990; Casdllaand Berger, 1990).

r“n=Y=ié X, (2-2)
ni;

§2=¢ =ié’1 (xi - Y)Z (2-3)
n-1g

2.3.1.2 Lognormal Distribution

The parameters of the lognorma distribution can be defined as. (1) the geometric mean,

Ig, and geometric standard deviation, 0g, estimated by 7 and s, respectively; or (2) the mean
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and standard deviation of the logarithm of X, Tinx), and Oinx), esimated by #,  and s,

respectively (Morgan and Henrion, 1990; Casdlla and Berger, 1990).

Inx (2_4)

S,y = AIN(X? +52) - 2In(X) (2-5)

In AuvTool, the mean of Inx, ijx, and the sandard deviation of Inx, &, are used asthe

parameters to define the lognormal distribution.

2.3.1.3 Beta Distribution

The beta didtribution has two shape parameters. The parameters can be estimated

through relationships with the sample mean and the unbiased sample variance, X and s> (Hahn
and Shapiro, 1967; Morgan and Henrion, 1990):

a=xixl-X) g0 (2:6)
e u

- lﬂ 2-7)
e S u
2.3.1.4 Gamma Distribution

The parameters of the gamma ditribution are the shape parameter &, and the scale
parameter 4, where 4 isan edimate of 4, and b isan estimate of &. These parameters are

estimated through relationships with the sample mean and unbiased sample variance, X and &

(Morgan and Henrion, 1990; Casdllaand Berger, 1990).

a=

[

(2-8)

O
I
><|| ”

(2-9)
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2315 Weibull Distribution

For the Welbull distribution, the relationship between the parameters and the centrd

moments of the data are (Morgan and Henrion, 1990):

X :6cfé~'i+%g (2-10)
s? = h2éa+2) - cra+ L)Y (2-11)
T Ea a’l

Thereisno closed form solution for the MoMM estimator of the parameters of the
Weibull digtribution. Therefore, as an dternative, a parameter estimation method based upon
regresson analysis of a probability plot is used.

In the probability plot method, if adataset is reasonably described by a Weibull

distribution, then the following transformation may be used to plot the data (Cullen and Frey,

1999):

[pé 1 W
Inj Ing=—y = cIn(x;) - cIn(k 2-12
n%nm% cIn(x;) - cin(k) (2-12)

where,
¢ = shape parameter
k = scde parameter
F(x)=1- F(x,) (2-13)
F(x,) isthe complementary CDF of x. An empirica estimate of the CDF can be

obtained using Equation (2-1), presented by Hazen (1914). Thus, it is possible to plot the data

st and to calculate the scale and shape parameters from the intercept and dope of a best fit
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Figure 2- 4. Example of a Probability Plot for aWeibull Digribution (n=50)

regression line obtained using conventiond least- squares regresson. An exampleis shown in

Figure 2-4 for n=50. In this example, the bext fit equation was:

In{In g_iu% 0.47313In(x, ) - 0.3644 (2-14)

|
Therefore, the shape parameter is c=0.47313. The scae parameter can be found by
solving the expression:

0.3644
(—) (2-15)
From Equation (2-15), it can be inferred that k is equal to 2.17.

2.3.1.6 Uniform Distribution
The parameters of the uniform distribution are the endpoints, aand b, which are

estimated by aand b. The parameter estimation formulae usng MoMM are as follows (Morgan

and Henrion, 1990):
a=X-/3s (2-16)

b=X+43s (2-17)
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2.3.1.7 Symmetric Triangle Distribution
The parameters of symmetric triangle distribution are aand b, which are etimated by
aand b. MoMM parameter estimation formulas for these two parameters are (Morgan and
Henrion, 1990):
a=X (2-18)
b=6s (2-19)

2.3.2 Maximum Likelihood Estimation (MLE)
The MLE methods involves the selection of parameter vaues that characterize a

distribution which was most likely to yield the observed data set (Cohen and Whitten, 1993). A
likelihood function for independent samples is defined as the product of the PDF evauated a
each of the sample values. For a continuous random variable, for which independent samples

have been obtained, the likelihood function is:

L (G Gy G) = O F (X, GGy ) (2-20)

i=1
where,
., O, ..., k= Parameters of the parametric probability distribution mode!.
k = Number of parameters for the parametric probability distribution modd.
X = Vaues of the random varigble, for,i =1, 2, ..., n
n= Number of data pointsin the data .
f = Probability density function.
The generd idea behind MLE is to choose vaues of the parameters of the fitted
digribution so that the likelihood that the observed datais a sample from the fitted distribution is
maximized. Thelikeihood is cdculated by evauating the probability dengty function for eech

observed data point, conditioned upon assumed vaues for the parameters, and multiplying the
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results. The parameter values may be changed, such as by using an optimization method, to
change the vaue of the likdihood function until amaximum isreached. More commonly, the
log-transformed version of the likelihood function is used, which is based upon the sum of the
natura log of the probability densty function evauated for each data point, conditioned upon
assumed values or the parameters. The MLE parameter estimators can be obtained by varying
the parameter vaues 0 asto find the maximum of the log-likelihood function.

The log-likelihood function of a univariate (describing one data set) two- parameter

digribution is given by:
L=4 f(x[a.,)] (2-21)

where,
n = number of data points.
L = Loglikelihood function
f = Probability dengity function
€1, & = parameters of atwo-parameter distribution
For definitions of the probability dengty function f(x| &, &) for different parametric
digtributions, see Table 2-1 in Section 2.2. For some parametric probability distributions, such as
the norma and lognormd distributions, andlyticd solutions for the maximum likelihood
edimators of the parameters are available by setting the first partid derivatives of the likelihood
function equd to zero. However, in many cases, an andyticd solution is not reedily available.
In these cases, the maximum likelihood parameter estimates can be found using numerica
optimization techniques. For the uniform distribution, since the dengity function is a congtant, no

MLE solutionisavailable. Except for the uniform digtribution, the estimation of the maximum
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likelihood parameter values for the digtributions in Table 2-1 can be formulated as the following

optimization problem:
Madmize L =8 In[f(x,[e.&,)] (2-22)
=1
Subject to
q:>0 for beta(q;=a), gamma (gr=a)), Weibull (q.=K)
>0 for beta(g.=b), gamma (02=b), Weibull (q.=C)
where,

n= number of samples

The optimization problem here isamultidimensona condrained one. A vaiety of
methods are available to solve such problems. These methods include the downhill smplex
method; the directionsat method, of which Powell’s method is the prototype; the penalty
function method; and others (Press, et al., 1992). In this study, Powell’s method is employed.
This method isrelatively easy to program, it does not require calculations of derivatives, and it
typicaly provides good results.

Optimization solutions for the MLE parameter estimates are used in AuvToal for the
gamma, Weibull, beta, and symmetric triangle digtributions. In the implementation of AuvTool,
for norma and lognorma digtributions, analytic solutions are used. The MLE esimators for the
norma and lognorma distributions are as follows (Morgan and Henrion, 1990):

MLE Parameter Estimators for the Normal Distribution

mzizié X, (2-23)
n -
s?=¢ :%é_ x, - X (2-24)



MLE Parameter Estimators for the Lognormal Distribution

1¢
mnxzﬁa (lnxi) (2-25)
i=1
s _(1g ~\2\Y2
S Inx _(Ha_. (lnxi - rT]nx) ) (2-26)

i=1

2.3.3 Parameter Egstimation Method Availability for Probability Digtributions
Table 2-2 summarizes the avallability of the MoMM and MLE parameter estimation

methods for the probability distributions used in AuvTool. MOMM egtimators are available for
al but the Weibull digtribution. For the Weibull digtribution, a probability plotting method is
provided in lieu of an MOMM method. MLE estimators are avallable for al but the uniform
digtribution.

24  Algorithmsfor Generating Random Samplesfrom Probability Distributions

Computing efficiency and programming Smplicity were used as the criteriafor sdecting
methods for generating random samples from various distributions using Monte Carlo sampling.
Monte Carlo smulation methods are based upon the use of a pseudo random number generator
(PRNG,) that produces a stream of random, independent uniformly distribution numbers.
Uniformly distributed random numbers are used as the input to dgorithms that generate random
numbers from other types of digtributions.

The mogt efficient and smple method for generating random variables from a particular
type of probability digtribution is the method of inversion (Frey and Rhodes, 1999). This method
is aways used when the CDF can be inverted. In many cases, however, the inverse CDF cannot
be written in aclosed form, and an aternative method is used. Some dternative methods are the
method of composition, the method of convolution, and the acceptance-regjection method (Law

and Kelton, 1991).



Table 2-2. Parameter Estimation Method Availability for Parametric Probability Digtributions

Didtribution MoMM MLE Comments
Types
Normal 0 0 Andytic solution for MLE
Lognormal O O Andytic solution for MLE
Beta 0 0 Optima Solution for MLE
Gamma 0 0 Optima Solution for MLE
Webull O O Optimal Solution for MLE
Uniform 0 N/A
Symmetric 0 0 Optimal Solution for MLE
Triangle

Note: [: The method is avalable for the given digribution.

[: The plotting method is used instead of MOMM for Weibull distribution

N/A: The method is not available in this case

In the following subsections, the PRNG and the methods used in the AuvTool to generate
random variables for the normd, lognormd, Weibull, gamma, beta, uniform, symmetric triangle
and step-wise empirical distributions are described.

24.1 Pseudo Random Number Generator
The term pseudo-random refers to numbers which gppear asif they are uniformly

digtributed random numbers that actudly are generated in a completely deterministic manner
(Barry, 1996). Pseudo random numbers are thought to be “good’ when they have the following
features (Rubingtein, 1981): (1) gatistica uniformity, (2) statistica independence, (3)
reproducibility, and (4) they can be generated quickly and economicaly. Anocther key
congderation is the period length, which is the number of random vaues that are generated
before the same sequence begins to be repeated.

There are avariety of methods for generating pseudo-random numbers (Bretley, et al.,
1987). The most widdly used method isthe Linear Congruentia Generator (LGC). The
advantage of LGC isits speed, smplicity and portability (Barry, 1996). However, a potentia

problem with a LGC gpproach isthat its period length is easily exhausted (L’ Ecuyer, 1996). Itis
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well recognized that, for statistical reasons, the period length of alinear-type generator should be
severd orders of magnitude of larger than what is actudly needed (L’ Ecuyer, 1994; 1996).
An approach for increasing the period and improving the structure of the generator isto
use combined Multiple Recursive Generators (MRGs) presented by L’ Ecuyer (1996). Inthis
method, two or more MRGs are combined. In AuvTool, acombined generator with two MRGs
isused and is described as.
Zn = (Xn=Yn) mod my (2-27)

where the two underlying generators X, and Y, are:

Xn= (a1 Xp-1 + & Xn-2 + a Xp-3) mod my (2-28)
and
Yn= (b1Yn1 + b2 Yoo + b3 Yi3) mod mp (2-29)
with coefficients
a =0, & = 63308, ag = -183326,
b;= 86098, b, = 0, bs = -539608,
and my = 231 - 1= 2147483647 and m, = 2145483479,

The operator “mod” in Equations (2-27), (2-28) and (2-29) divides two integers and returns the
remainder of the divison. The period of this PRNG is 2°%° ; the six initid valuesfor xo, X1, X2

and yo, 1, y» can be any integers from 1 to 2°! - 1 = 2147483647 (L’ Ecuyer,1996). In AuvTool,
theinitia vauesfor the xo, X1, X2 and yo, Y1, Y2 are 1973272912, 281629770, 20006270,
1280689831, 2096730329, and 1933576050, respectively. Only the value for the seed Xp is
available for usersto modify.

2.4.2 Normal Digribution
Generation of random variables from a normd digtribution is smplified by the fact that

any norma digtribution can be written in terms of the standard normal distribution, with amean
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of zero and standard deviation of one. The symbol “~" denotes “isdigtributed as.” If X ~ N(i,
6?), andif x¢~N(0,1), which is the standard normal distribution, then
X=1+0 x¢ (2-30)
Therefore, it isonly necessary to generate random numbers from the stlandard normal.
Standard normd random samples can be generated using an acceptance- rgjection method
developed by Box and Muller (1958). In this method, two uniformly distributed U(0,1) random
variaes, U, and U, are used to generate two N(0,1) random variates, X; and X,. The Box and

Muller method is used to caculate X; and X, asfollows:

X, = ./-2InU, cos(2pJ,)
X, =[-2InU, sn(2pU,)

However, amore efficient verson of the Box-Muller method, caled the polar method,

(2-31)

was developed by Marsagliaand Bray (1964). The polar method is used in thisstudy. The

agorithm is presented in Law and Kelton (1991) asfollows:
Stepl: Generate U; and U asindependent and identicaly didtributed (11D) uniform
random samples on the interva [0,1]. Therefore, U; ~ (0,1) and U, ~ (0,1)

Step2: LetVi=2U; - 1fori={1, 2}, andlet W= Vi + V% If W> 1, go back to Step 1.

Otherwise, let Y =/(22In(W)/ W, X = V1Y, and Xg = VY.
Step3: Then X¢ and X¢ are [ID N(0,1) random variates. X; =1+ 6 X{and X =1+ 6 X¢
so that X; and X, are 11D N(i, 62).
Since two norma random samples are generated with each cal of this subrouting, in
principle the procedure only needs to be implemented once for every two norma digtributions
that areto besmulated. If U; and U, weretruly 11D random variables from auniform

digtribution U(0,1), then using X followed by X» on subsequent calls to the subroutine would be
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vdid. It has been shown, however, that if U1 and U, are sequentid pseudo random numbers (as
isthe casein thisimplementation) then X; and X, will fal onaspird in (X1, X2) space, rather
than being truly 11D. In order to ensure that dl normd random variates are truly 11D in this
implementation, only X; isused and X, isdiscarded. Another option would be to generate U
and U5 from separate and independent pseudo-random number streams.

2.4.3 Lognormal Digtribution
Lognorma random samples are generated by using a specia property of the lognorma

distribution. Namely, if Y~ N(iin, S2.),thene” ~ LN (i, s?.). Therefore, lognormal

2
Inx

random samples are generated by the following agorithm:

Generate Y ~ N(iiny, S2.),

Inx
X = eY, sothat X ~ LN(ilnX’ S I2nx)’

Notethat ijnx and s 2 arethe mean of Inx and standard deviation of Inx.

Inx

244 BetaDistribution
The method used in this study for generating beta random samples relies upon a specid

property of the beta distribution. The beta distribution can be described as aratio comprised of
gammadigributions. If Y1 ~G(a,1) and Y2 ~ G(4,1) and Y; and Y- are independent, then X =
Yi/(Y1+Y2) ~ B(&, 8 (Law and Kdton, 1991). Thus, the methods described for generating
random samples from agamma digtribution are used as a basis for generating random samples
for the beta distribution

245 GammaDidribution
Like the norma and lognorma distributions, the gamma distribution has no closed form

solution for its CDF or inverse CDF. Therefore, the method of inverson is not feasible for
generating random variablesin thiscase. An acceptance-rgection method is used hereto

generate gamma random variables.
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In generating G(&, &) random variadbles, it isnoted that if X¢ ~ G(4,1), then X = &x¢ ~
G(4,d. Therefore, only the G(&,1) distribution needs to be simulated and the results can be
eadly trandformed to that of any G(4, &) didribution. Furthermore, a gamma digtribution with a
=1, G(1, §, issmply an exponentid digtribution withamean of &.  Exponentia random
variables can be easily generated by the method of inversion as shown below (Morgan and

Henrion, 1990):
X =- %In( u) (2-32)

where U isarandom sample from the U(0,1) distribution and & is the parameter of the
exponentia digtribution.
Gamma digributions for which & < 1 are shaped sgnificantly differently than gamma
digributionsfor which & > 1. Therefore, two digtinct acceptance-regjection agorithms are
necessary.
For & < 1, an acceptance-rgection agorithm by Ahrens and Deiter is used in this study.
A description of this method is provided in Law and Kedton (1991), where the following
agorithm is dso presented:
Stepl. Letb=(e+a)e (eisaconsant, and e= exp(1.0) =2.718282) )
Step 2. Generate U; ~U(0,1), and let P = bU;. If P> 1, goto step 4. Otherwise
proceed to Step 3

Step3. LetY=PY* and generate U, ~ U(0,1). If U, O e, return X = Y. Otherwise,
go back to Step 1.

Step 4. Let Y=-In[(b- P)/ 4] and generate U> ~U(0,1). If U, 0 Y4 L reurn X =Y.

Otherwise, go back to Step 1.
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For & > 1, amodified acceptance-rejection agorithm by Cheng (1977) is used to sample
random samples from a Gamma distribution. A description of the method is provided in Law
and Kelton (1991). Only the dgorithm is presented here:

Stepl. Leta=1/+2a-1,b=a-In4q=a+la q=45andd=1+Ing

Step 2. Generate U, and U, as 11D U(0,1).

Step3. LetV=anUi/(1-Uy)],Y=ae",Z=(uv’v,),andW=b+qV-Y.

Step 4. If W+d-4az 0o, return X =Y. Otherwise, proceed to Step 5.

Step 5. If WO InZ, return X =Y. Otherwise, go back to Step 1.

2.4.6 Waebull Digribution
The CDF for the Weibull digtribution can be written as (Morgan and Henrion, 1990):

F(x) =1- exp” *"*" (2-33)
A random sample, X, from aW(k,c) can therefore be generated directly by the method of
inverson using the inverse CDF:
X =F*U)=k[-In@- u)” (2-34)
where U isarandom sample from the U(0,1) digtribution.

2.4.7 Uniform digribution
The method of inverson isused in this study for generating uniform distributions with

any arbitrary endpoints. The method is as follows (Morgan and Henrion, 1990):
X =a+(b- a)u (2-35)
where U isarandom sample from the U(0,1) digtribution.

24.8 Symmetric Triangle Distribution
The method of inverson is used in this study for generating symmedric triangle

digtribution, as follows as (Morgan and Henrion, 1990):

40



X = (a- b)+ b(2u)* 0£UEO0S5

(2-36)
X = (a+b)- b(2.0- 2U)¥ 05<UE£1.0
where U isarandom sample from the U(0,1) distribution.

2.4.9 Empirical Digribution
In an empiricd digribution, a data set is described by a step-wise empiricd cumulative

digtribution function, in which the probaility of sampling any discrete vaue within the dataset is
1/n. A random re-sampled version of the origina data set, of Szen, is denoted by:
XF=(X1*, Xo* . Xn*) (2-37)
The agterisks indicate that X* isnot actud data set X, but rather a randomized or
resampled verson. Since the sampling is done with replacement, it is possible to have repeated
vaues within any given random samples from an empiricd distribution.
The dgorithm for generating arandom sample from an empiricd digribution isas
follows
Step 1. Rank an originad data set in an ascending order to have an ordered dataset X° in
which Xm° < Xm+1°, where, m=1,2...n.
Sep 2. Generate arandom number U from an U(0,1) distribution.
Step 3. Cdculate an index using the following formula
i=n" U (2-398)
where,
i isareturned smalest integer that islarger thanorequal ton” U
between 1 and n by rounding up the product of n~ U

Step 4: Retrieve the data, Xi°, located at the i™" of the ordered dataset X°.

41



25  Evaluation of Goodness-of-Fit of a Probability Distribution Model
There are many goodness-of-fit tests available from which to evauate the goodness of fit

of an assumed distribution mode with respect to the data. Two genera types of approaches for
evauating goodness of fit include probability plots and Satitic tests (Cullen and Frey, 1999).

Probability plots are widely recognized to be a subjective method for determining
whether or not data contradict an assumed mode based upon visua ingpection (Cullen and Frey,
1999). A graphicd technique used in AuvToadl isto compare the CDF of the fitted distribution
with the origina data set plotted using the Hazen plotting position method (Hazen, 1914) that
was introduced in Section 2.1.

Statistical goodness-of-fit tests provide a quantitative measure of the goodness- of-fit of
the assumed probability distributions, but many only apply to parametric digtributions. An
empirica didribution is an exact representation of the dataiin which each data point is assigned a
probability of 1/n; therefore, a statistical goodness-of-fit test is not needed in thiscase. Three
common goodness- of-fit tests for parametric distributions include the chi- square te<t, the
Kolmogorov-Smirnov (K-S) test, and the Anderson-Darling (A-D) test. However, these tests
may only be employed if aminimum amount of datais available (Cullen and Frey, 1999). For
example, for the chi-square tet, at least 25 data points should be available. The K-Stest can be
used with asfew asfive data points. The A-D test isvalid if the number of samplesis greeter
than or equa to eight.

The chi-sguare test involves cdculating atest satigtic that gpproximately follows achi-
square distribution only if the hypothesized model cannot be regjected as a poor fit to the data.
The advantage of chi-square test isits flexibility; it can be used to test any distribution.

However, a disadvantage of this method isthet it has lower power than other Satidtical tests

(Cullen and Frey, 1999). This is because the chi-square test involves binning of the data. In
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binning the data, some of the information associated with individua data pointsislogt. Thus, the
chi-square test isless discriminatory than atest that makes more sufficient use of dl data points,
such asthe K-Stest.

The K-S test involves a comparison between a stepwise empirica CDF and the CDF of a
hypothesized digtribution. Thistest is based upon evauation of the maximum differencein the
cumuletive probability of the fitted digtribution versus that of adata point. An attractive feature
of K-Stest isthat it isadidribution-free test of goodness of fit. An advantage of K-S test over
the chi-square test is that it can be used with smdler sample szes. However, K-S test tends to be
more sengtive to deviations of a good fit near the center of the distribution compared to at the
talls (Stephens, 1974; D’ Agostino and Stephens, 1986).

The A-D test isa“ quadratic” test that is based upon aweighted square of the vertica
distance between the empirical and fitted distributions (Cullen and Frey, 1999). The A-D test
gives more weight to the tails than does the K- Stest and therefore is more sensitive to deviations
inthefit at the tails of adidribution (Stephens, 1974). However, the A-D test is not distribution
freetest. Therefore, the critical values must be calculated specificaly for each type of
parametric digribution. Therefore, the A-D test is often used as a supplement to other goodness-
of-fit tedts.

Because the chi-square test requires at least 25 data points, and because it is not as
powerful as other methods, the chi-square test was not included in AuvTool. TheK-Sand A-D
testsareincluded in AuvTool.

It must be pointed out that there are some limitations with the use of gatistical goodness-
of-fit tests. For example, they address only one possible criterion for determining goodness-of-

fit, and could imply acceptance of afit that might be poor for reasons not addressed by the
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criterion, or imply rgjection of afit that might be acceptable for reasons not addressed by the
criterion. For example, it is possible that a normal distribution might not be rgjected by a
goodness-of-fit test. However, if the normd digtribution is used to represent a quantity that must
be non-negative, and if the probability of predicting negetive vaues usng anorma digtribution

is not negligible, then the use of anormal distribution will not make physica sense. Therefore,

an uncritica gpplication of a goodness-of-fit test can lead to an inappropriate choice of
parametric digribution. Conversaly, the goodness-of-fit test may imply rgjection of anon
negdtive distribution, such as alognorma, which might be theoreticdly consstent with the basis
of the data. Therefore, users are strongly urged not to rely on the results of goodness- of-fit tests
without ingpecting the results and considering other factors that are important to the selection of
an gppropriate parametric distribution.

The graphical comparison of the CDF of the fitted digtribution to the original data set
plotted using the Hazen plotting position is more informeative when confidence intervas are
estimated for the fitted CDF, and when the frequency with which data are enclosed by the
confidence intervalsis taken into account. This approach is discussed in more detail in Section
2.6 on bootstrap smulation.

In the following subsections, methods for evauating the adequacy of thefit of a
parametric distribution with respect to the data are explained in more detail. These include the
techniques used in AuvTooal for: (1) visualy comparing the CDF of the fitted distribution with
the data; (2) usng the K-Stest; (3) using the A-D test; (4) and visudly comparing confidence
intervals for the CDF of the fitted distribution with the data. In addition, the method for
automaticaly fitting distributions to the datain batch mode is discussed, with gppropriate

warnings to the user regarding limitations of the method.



25.1 Graphical Comparison of CDF of Fitted Digtribution to the Data
The goodness-of-fit of a parametric distribution compared to the data can be visudly

ingpected. Thisisaccomplished by plotting the CDF of the fitted distribution versus the data.
The data can be plotted using the Hazen plotting position introduced in Section 2.1.

Since andyticd solutions are not avallable for CDFsfor dl of the parametric
digtributions used in AuvTool, the CDFs are estimated using numerica smulation. The
congruction of anumericaly stable representation of CDF of the fitted ditribution is based on
datigtica theory. The CDF is esimated by generating alarge number of random samples from
the parametric digtribution and plotting them using the Hazen plotting position. With alarge
number of samples, the numericdly amulated CDF will look asif it is a continuous smooth
curve. The sample size chosen for numerica smulation of the CDF for purposes of graphica
display is based upon the statement in Casdlaand Berger (1990) that if the sample Szeislarge
enough (e.g., >=2,000), then the sample can be assumed to be a very good representation of
population distribution.  Therefore, in AuvTool, 2,000 random numbers are generated for the
digtribution and are used to construct an empiricd CDF using the Hazen plotting pogition. The
numerically smulated CDF is considered to be a very good representation of the actua CDF of
the fitted distribution, and it is plotted in the same graph with the origind data set.

An example of agragphicad comparison of a numericaly smulated CDF for a parametric
probability distribution and of the data to which the digtribution was fit is shown in Figure 2-5.
The data are depicted by open circles. The numericaly smulated CDF is depicted by a solid
line. The example shown in Figure 2-5 isfor abeta digtribution fit to a data set for a quantity
that is bounded by zero and one. The beta distribution corresponds very closely with the data
over most of the range of the observed vaues. Graphs smilar in technica content to this

example, athough somewhat different in format, are produced by the AuvTool GUI.
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Figure 2-5. Comparison of Fitted Beta Digtribution to an Example Dataset

2.5.2 Kolmogorov-Smirnov Test
As previoudy noted, the K-Stest is based on comparison of the CDF of the fitted

digribution to an empirical CDF of the data. The maximum discrepancy in the estimated
cumulative probabilities for the two CDFsisidentified. The maximum discrepancy is then
compared to a criticd vaue of the test gatidtic. If the maximum discrepancy is larger than the
critical vaue, the hypothesized digtribution is rgected (Cullen and Frey, 1999). Thismethod is
also discussed by Ang and Tang (1984), D’ Agostino and Stephens (1986), and others.

The dgorithm for performing the K- S test is described here:

(1) Rank the original datain an ascending order to have an ordered dataset X in which Xy

< Xk+1, Where, k =1,2...n.

(2) Develop a gtepwise cumuletive dengity function as follows:

i
T 0 X < X,
.
S, (x) =1 k/n X, £XEX,,, (2-39)
: 1 X3 X,

b
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where,
Sh(X) = The sepwise cumulative dengity function
n= The number of data pointsin a data set
X = The data
(3) Cdculate the maximum difference between S,(x) and the CDF of the fitted

didribution over the entirerange of X.  The maximum difference is denoted by:

D, = max|F(x)- S, (x)| (2-40)
where
Dy, = The maximum difference

F(xX) = The CDF of the fitted digtribution

(4) Compares the cal culated maximum difference from Equation (2-40) with the critical
vaue D a adgnificance level of &

The often-used sgnificance level is0.05. Thecritical valuesofD? a asgnificance level

of 4=0.05 are tabulated in the Table 2-3.

Table 2-3 ligstwo kinds of critical values at a significance level of 4=0.05. Oneis

marked as* Specified”, another is marked as* Unspecified”. “ Specified” impliesthat the

underlying distribution type representing a data set is known, while “Unspecified” meansthat the

information involving the underlying digtribution for a data set is unknown. For example, if

there is a sample for which the true vaues of the parameters of the population digtribution are

known, a* specified” critical value would be used. However, in most cases, the parameters of

the digtribution are estimated from the same data set for which the goodness- of-fit comparison is
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Table2-3. Citicd Vaueof D," the Kolmogorov-Smirnov Test

n 4=0.05 n 4=0.05
(Specified) (Unspecified)

5 0.56 5 0.337
10 0.41 8 0.285
15 0.34 10 0.258
20 0.29 12 0.242
25 0.27 15 0.220
30 0.24 16 0.213
35 0.23 18 0.200
40 0.21 20 0.190
45 0.20 25 0.180
50 0.19 30 0.161

>50 1.36/4/n >30 0.886 /+/n

(Massey, 1951, Lilliefors, 1967)

made. Inthislatter Stuation, the "Unspecified” vaues should be used. Sincethislatter caseis
more common, the “Unspecified” critica values are used in the development of AuvTooal. If the
critical vaue of anumber n isnot listed in the Table 2-3, and when n isless than 30
(“Unspecified”), alinear interpolation is used to caculate the critical vaue for the number.

The K-Stest isadigtribution-free; it can be gpplied to normd, lognormd, beta, gamma,
Weibull, uniform, and symmetric triangle digtributions. However, the K-S test has severa
important limitations: (1) it isonly valid for continuous digtributions; and (2) it tends to be more
sengtive near the center of the distribution than at the tails (D’ Agostino and Stephens, 1986).

25.3 Anderson-Darling Test
The A-D test isused to test if asample of datais from a population with a specific

digtribution (Stephens, 1974). It isamodification of the K-S test and gives more weight to the
tails than does the K-Stest. Unlike K-Stest, the A-D test is not a distribution-free test. For
different digtributions, A-D test statistics and the corresponding critical values are different. For
some distributions, rdevant information for calculating the A-D test is not avalable in literature,

These didributions include uniform, symmetric triangle and beta digtributions. Therefore, in
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AuwvTool, the A-D test isavailable only for the norma, lognorma, gamma and Weibull
distributions.
The A-D test gatistic is defined as.
A*=-n-sS (2-41)
where,

s=3 (21 - 1)
i-1 n

[In(F(x,)+ I(1.0- F(x,., )] (2-42)

F isthe cumulative digtribution function of the specified digtribution. X isthe ordered
data (Stephens, 1974; D’ Agostino and Stephens, 1986).
When parameters of an assumed distribution are not known, and have to be estimated
from the sample data, the A-D test atistic must be modified (D’ Agostino and Stephens, 1986).
For normd and lognormd distribution, the modified statistic is (D’ Agostino and Stephens,
1986):
A" =A?*1.0+0.75/n+225/n?%) (2-43)
For the Welbull distribution, the modified satistic is ( D’ Agostino and Stephens, 1986):
A" = A2(1.0+0.2/4/n) (2-44)
For the gamma distribution, when both the scale and shape parameters are unknown and
are estimated from the data, the A-D test statistic does not need to be modified (D’ Agostino and
Stephens, 1986). However, the critical vaue at a given sgnificance levd for the gamma
distribution is dependent on the magnitude of its shape parameter (D’ Agostino, Stephens, 1986).
The critica vaues of the A-D test for the normd, lognorma, and Welbull digtributions

are given in Table 2-4 and for the gamma digtribution are given in Table 2-5.
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Table2-4. The Critical Vauesfor Anderson-Darling test for Norma, Lognorma and Weibull

digributions
Digribution 4=0.10 4=0.05 4=0.025 4=0.01
Normal,
Lognorma 0.631 0.752 0.873 1.035
Webull 0.637 0.757 0.877 1.038

(D’ Agostino and Stephens, 1986, Table 4.7, p=123; Table 4.17, p=146)

Table 2-5. The Criticad Vauesfor Anderson Darling test for the Gamma Didtribution

Shape Parameter Significant Level 4=0.05
1 0.786
2 0.768
3 0.762
4 0.759
5 0.758
6 0.757
8 0.755

10 0.7%4
12 0.754
15 0.7%4
20 0.753
>20 0.752

(D’ Agostino and Stephens, 1986, Table 4.21, p=155)
In AuvToal, linear interpolation is used to caculate the critical vaue of the A-D test for
any given shape parameter based on the vaues provided in Table 2-5 for gamma distribution

2.5.4 Graphical Comparison of Confidence Intervalsfor CDF of Fitted
Distribution to the Data

The results from bootstrap smulation can be used to help evauate the goodness of afit of
adigtribution with respect to the origind data by graphicaly comparing confidence intervas for
CDF of the fitted digtribution to the data. More details on the bootstrap ssimulation and how the
confidence intervas for CDF of the fitted distribution are estimated can be found in Sections

2.6.1,2.6.3,and 2.6.4.
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Figure 2-6. An lllugrative Example of Graphicd Comparison of Confidence Intervas
for CDF of Fitted Didtribution to the Data

Figure 2-6 graphically shows a comparison of confidence intervals for the fitted
digtribution with an example data set. The results are from two-dimengond smulation with the
points out of 41 are contained within the 95 percent confidence intervals. Thus, thefit in this
caseisareasonably good one. On average, it is expected that 95 percent of the datawill fal
indgde of a 95 percent confidence interva of CDF of afitted digtribution if the data are arandom
sample from the assumed population distribution

255 Criteriafor Automatically Seeking a Best Distribution Moddl in Batch Mode
Analysis

A technigue for asssting the user in choosing a best parametric probability distribution
modd for adataset isincluded in AuvTool. The technique is based upon the of the K-S
goodness-of-fit test. The technique is applicable to the normal, lognormd, beta, gamma and
Welbull digribution. Although K-Stest is dso available for uniform and symmetric
digributions, the two distributions are more often used to characterize subjective expert

judgment and are not typicaly used when fitting digtributions to data. Therefore, the uniform
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and symmetric distributions are not included as options in the batch mode distribution sdlection
technique.

A premisefor usng K-Stest value as acriterion isthat a smdler vaue of the K-S test
datistic implies a better fit. However, it must be pointed out that there is no specific support for
this premisein the literature. The evauation and sdlection of fitted distributions involves many
factors. A digribution mode that has the smalest value of K-Stest may not aways be the best
mode for describing avariable. For example, suppose that thereis a variable for which samples
could be larger than 1. However, because of limited sample Sze, it is possble that dl of the data
available in a given sample have vaues between 0 and 1. In this case, the results from using the
batch andlyss feature provided in the AuvTool might suggest that a beta distribution is a better
fitin terms of the K-Stest values. However, the two parameter beta distribution would
ingppropriate as a choice for describing arandom variable whose values could exceed 1.
Anather example is given in Cullen and Frey (1999) for aleafy vegetable producing PCB
concentration dataset.  In the example, dmost dl of the many analyses pointed to the normal
digribution as being a better fit to the data than the lognormal distribution. However, the use of
the norma digtribution in that example leads to unacceptably high probabilities of predicting
negative concentrations. Therefore, the normal distribution would be an inappropriate choice,
even though it provided the best fit, because the PCB concentrations cannot be negative.
Therefore it must be emphasized that uncritical application of the batch mode distribution
selection procedureincluded in AuvTool can lead to an inappropriate selection of a
parametric probability distribution modd.

The user of AuvTooal is cautioned that the availability of abatch mode technique for

choosing a distribution based upon the K-S test is not a subdtitute for the use of judgment. The
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K-Stedt is based upon a specific criterion which may or may not be important to a particar
andys or decison maker in the context of a specific problem. The K-Stest does not screen for
results that may be physcdly implausible, such as a probability of sampling negative vaues for
aquantity that must be non-negative. The appropriateness of sdection of a digtribution depends
on the data qudity objective of each andys's, which may differ from one Stuation to ancther.
Therefore, uncritica gpplication of the batch mode feature of AuvTool for seeking abest fit
digribution islikely to lead to inappropriate selection of a probability distribution modd in some
cases. Itistheuser'sresponsbility to evaluate the automatically selected parametric
probability distribution for appropriateness with respect to the user'sown criteria and
needs.

25.6 Summary of Methods for Evaluating Goodness-of-Fit
Severd different techniques for eva uating goodness- of-fit of a parametric probability

digtribution modd compared to a data set have been presented. Although it istempting to base
the selection of a parametric probability distribution mode solely upon the application of a
goodness-of-fit Satidticd tes, this temptation should be strongly ressted. Ingeed, it is criticaly
important to congder the following questions in making the choice of a parametric distribution:

Is the sdlected parametric probability distribution modd consstent with the datain terms
of underlying theory?

|s the selected parametric probability distribution a plausible representation of the data?
For example, if the data must be nonnegative, does the selected distribution aso
have this festure?

What characterigtics of the distribution are of most concern in your specific assessment,
and are these criteria the same as those for the goodness-of-fit test? If o, then the
goodness-of-fit test should be treated as a useful consderation in choosing a
digtribution, but it should not be the only consideration. The latter is epecidly trueif
the answers to ether of the first two questions are "no".

Are the criteriafor the goodness- of-fit test relatively unimportant for a particular
assessment? In this case, the user will find it more ussful to rely upon a graphica
comparison of the fitted distribution with the data, either based upon a comparison of
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the CDF of the fitted distribution with the data, or based upon a comparison of the
confidence intervas of the CDF of the fitted distribution with the data

In fact, both graphical comparison and etistica goodness-of-fit tests involve subjective
judgment regarding what congtitutes an acceptable fit (Cullen and Frey, 1999). For example, the
K-S and A-D tests involve subjective judgment regarding the choice of sgnificance levels.

Many authors emphasize the subjective nature of statistical tests. Hann and Shapiro (1967) state
this quite wdl in their excellent book:
“One might conclude..... that a proper procedure for selecting adistribution isto consder a
wide variety of possible models, eva uate each by the methods here described, and assume as
correct the one that provide the best fit to the data. However, no such gpproach isbeing
suggested. Where possible, the selection of the model should be based on an
under standing of the underlying physical properties... Thedidributiond test then
provides a ussful mechaniam for evauating the adequacy of the physica interpretation. Only
asalast resort is the reserves procedure warranted, and then, only with much care, for,

athough many modes might appear gppropriate within the range of data, they might well be
in error in the range for which predictions are desired,” (pp.260-261).

2.6  Characterization of Variability and Uncertainty
The primary objective of this section is to introduce relevant methods for characterization

of uncertainty in the mean, sandard deviation, and parameters of adigtribution. Uncertainty in
adatidtic attributable to random sampling error can be represented by a sampling distribution
(Cullen and Frey, 1999). Sampling digtributions are used to estimate confidence intervas for the
parameters of adigribution. A confidence intervd for a datigtic is a measure of the lack of
knowledge regarding the value of the atigtic. There are avariety of methods for characterizing
uncertainty in the mean or sandard deviation, including andlytical solutions and numerica
amulaions. Andyticd solutions are avalable for cases in which the underlying didtribution for
adaaset isnormd or for which the variance is smal enough and/or the sample size for adata
st islarge enough (e.g., >30). If the underlying population digtribution is not norma and the

sample szefor adata set is amdl, andyticd methods based upon normaity may lead to



sgnificant errorsin the esimation of confidence intervals. Therefore, thereisaneed for amore
flexible gpproach for estimating sampling distributions and confidence intervals. The numerica
samulation method of bootstrgp smulatio, may be used to estimate confidence intervals for the
mean or other gatistics (Efron and Tibshirani, 1993).

Bootstrap smulation, introduced by Efron in 1979, isanumerical technique origindly
developed for the purpose of estimating confidence intervals for statistics based upon random
sampling error. This method has an advantage over anaytica methodsin that it can provide
solutions for confidence intervas in Stuations where exact andyticd solutions may be
unavailable and in which gpproximate andytica solutions are inadequate. For example, in
esimating uncertainty in the sample mean, bootsirgp smulation does not require that the origina
data st be normdly digtributed, even for smal sample Szes. This advantage over andytica
methods that are based on normdity assumptions makes bootstrap smulaion a more versatile
and robust method for estimating uncertainty in a atistic due to sampling error, especidly for
non-norma data sets (Cullen and Frey, 1999). Bootstrap simulation has been widdy used in the
prediction of confidence intervasfor avariety of datitics.

The method illustrated by Frey and Rhodes (1996;1998) for using bootstrap smulation
in the context of an environmenta case study is the basis for the smulation technique used in
AuvToal. The following subsections introduce the bootstrap method and the two mgor steps
associated with the bootstrap method: (1) generating bootstrap samples; and (2) forming
bootstrap confidence intervas. In addition, the details of the two-dimensona smulaion method
presented by Frey and Rhodes (1996; 1998) are described.

2.6.1 Bootstrap Method
The bootstrap method addresses uncertainty due to random sampling error by first

assuming that the origind data set, X, of sample sze n, isarandom sample from the distribution

55



F , and then repeatedly asking the question: Wheat if the data set had been adifferent set of n
random vaues from the same distribution F ? This question is answered by repestedly
generating “bootstrap samples.” A bootstrap sample, X, is defined as arandom sample of sizen
taken from the distribution, F . Bootstrap samples may be simulated using random Monte Carlo
simulation (Rhodes, 1997). A large number, B, of independent bootstrap samples (x' %, x 2, ...
X ") are selected from the distribution F . From each of the B bootstrap samples, anew statistic
q , iscomputed such that:
qg'=f(x") fori=1,2, ...,B (2-45)
Each q° isreferred to asabootstrap replicateof g (Rhodes, 1997; Frey and Rhodes, 1999).

The bootstrap replications (q"*,q % ,....q"®) are each independent redlizations of an
estimate of the parameter g  The dispersion of vaues of the bootstrap replications reflects the
uncertainty in the sample estimate of the unknown parameter, q, attributable to random
sampling error. The bootstrap replicate va ues describe an estimate of the sampling distribution
of the daigtic. Since adatidtic is esimated from randomly drawn vaues, it isitsef arandom
variable. The number of bootstrap replications necessary to reasonably approximate the true
sampling digtribution of the statistic depends upon the Satistic being estimated. For, example,
according to Efron and Tibshirani (1993), to compute the standard error of the mean (the origina
intent of the bootstrap technique), B = 200 is generaly enough and B = 25 is often sufficient.
However, for computing confidence intervals or estimating percentiles of sampling ditributions,
Efron and Tibshirani (1993) suggest B = 1000. In examples for computing confidence intervals
given in Efron and Tibshirani (1993), the number of bootstrap replications ranges between B =

1,000 and B = 2,000.
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2.6.2 Methods of Generating Bootstrap Samples
In bootstrap smulation, the sample data points, X = {X1, X2, ..., Xy} are assumed to be a

random sample of sze n from some unknown probability digtribution F. The parameter of
interest, g, isacharacterigtic of the digtribution of F, q= f(F), such as the mean, variance, shape

or scale parameter, or any fractile or quantile of the distribution F. An estimate of qisthe

satisticq , which is determined from the data set, g = f(X).

Using the data set, X, the distribution F |, is defined to be an estimate of the unknown
population didribution F. The digtribution may be defined as either an empirica distribution or
aparametric digribution. The former is the basis for non-parametric bootstrap, and the latter is
the basis for parametric bootstrap (Efron and Tibshirani, 1993). Nonparametric bootstrap is also
commonly referred to as "resampling.” One of the main shortcomings of resampling of a data set
isthat the minimum and maximum val ues obtained in each bootstrgp sample are limited to the
minimum and maximum vaues within the data set. When only smdl data sets are avallable, this
can lead to biasesin the representation of a given modd input (e.g., fallure to consder possible
large vaues that are not present in the limited data set). The use of parametric ditributionsis
oneway to dlow for the posshbility that smaler or higher values than those observed in the data
set may occur in the red system being modeled. The method of generating bootstrap samples
based on an empiricd digtribution for non-parametric bootstrap smulation is discussed in
Section 2.4.9. The dgorithms for generating bootstrap samples based on parametric distributions
for normd, lognormd, beta, gamma, Weibull, uniform, and symmetric triangle digtributions are
documented in Sections 2.4.2 through 2.4.8.

2.6.3 Methods of Forming Bootstrap Confidence Intervals
The development of good confidence intervas is an important issue in bootstrap

samulation. “ Good” means that the bootstrap intervals should closaly match exact confidence
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intervals in those specia Stuations where statistical theory yields an exact answer, and the
interval should give dependably accurate coverage probabilitiesin dl stuations. A method that
produces such a good confidence intervals should be both transformation respecting and second-
order accurate (Efron and Tibshirani, 1993).

Severa bootsirap confidence interval methods have been proposed in the literature (Efron
and Tibshirani, 1993; Burr, 1994). These methods include the standard normal, percentile,
bootstrap-t, and Efron's BC,.  The standard norma method requires the imposition of normality
assumption on the bootstrap distribution and it is neither transformation respecting nor second-
order accurate. Therefore, the standard norma method is not a* good technique’ for forming
bootstrap confidence interval. The percentile method is possibly the most frequently used in
practice. Although it isonly firg-order accurate, the intervals obtained from this method are the
smplest to use and explain (Efron and Tibshirani, 1993). The bootstrap-t and the BC, intervals
are comparable in that both have been demonstrated theoreticaly to be “second-order correct”,
but the bootstrap —t method is not transformation respecting. Burr (1994) suggests that
bootstrap-t is unstable. More discussion on these methods can be found in the Efron and
Tibshirani (1993), Burr (1994), and Martin (1990). Though there is no gold standard to make a
definitive conclusion as to which method is the best, for smplicity and because it isthe most
widely used method in practice, the percentile method will be discussed and used.

When caculaing a confidence interva, the intent is to develop an interva that has a (1-

2a) probability of enclosng the true vaue of adatistic, ¢ The upper and lower bounds of this

confidence interval are determined by ordering the B bootstrap replicates of q

(9*.a?,..9"%). Giventhese ordered statistics, the 100ath percentile (the lower bound of the

confidence interval) isthe B- ath largest value, g ®* , and the 100(1-a)th largest value, g% 2,
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For example, for B =1,000 and a = 0.05, the 90 % confidence interva for some parameter, g, is
given by:
[0 a "1 =a " a ] (2-46)
where, ¢ and g *° are smply the 50" and 950" values in the ordered set if the bootstrap
datigtics.

2.6.4 Two-dimensional Smulation of Variability and Uncertainty
AuvTool featuresthe use of the two-dimensiona approach to smulation of both

variability and uncertainty employed by Frey and Rhodes (1996, 1998) and that has also been
implemented in other prototype software (e.g., Frey and Zheng, 2000) as described in Chapter 1.

As shown in Figure 2-7, bootstrap smulation is used to Smulate the uncertainty in the

parameters of a frequency digtribution, F , that has been fitted to a data set of samplesizen. A
total of B bootstrap samples of sample size n are smulated. For each bootstrap sample, anew
digtribution isfitted and a bootstrap replication of the distribution parametersis caculated. The
bootstrap smulation produces paired parameter estimates. These multivariate sampling
digtributions of the parameters represent the uncertainty in the ditribution parameters. In the
two-dimensond amulaion, atotd of q different frequency distributions are smulated, where q
= Bin mogt cases presented here. Each dternative frequency distribution is based upon a
different set of bootstrap replicate distribution parameters. For each dternative frequency
digtribution, atota of p random samples are Smulated to represent one possible redization of
variability within the population. For example, suppose B=500 and p = 500. Thus, atota of
250,000 samples are generated, representing 500 samples from each of 500 dternative frequency

digributions. For each redlization of uncertainty, the samples are sorted to represent cumulative
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g=Sample Size Used for Uncertainty, p=Sample Size Used of Variability)
(Frey and Rhodes, 1998)
digribution functions. Thus, there are 500 vaues for any given daidtic (e.g., mean, variance,

95" percentile of variability) which can be used to construct confidence intervals for each
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datigic. An example graph of probability bands from two-dimensiond smulation was shownin
Figure 2-6 of Section 2.5.4.

2.7  Evaluation of Dependence or Correlation between Statistics of I nterest
Possible dependence or correlation between the mean, and standard deviation, and

between the parameters of distributions sometime exigts. The evauation of the dependence or
correlaion will guide analysts to correctly make use of the statistics (Morgan and Henrion,

1990). A sample correlation describes the strength of the linear association between variables.
An association between variables means that the value of one variable can be predicted, to some
extent, by the value of the other. A linear corrdation isa specid kind of association. A non
linear relation can be transformed into a linear one before the correletion is calculated. There are
afew ways to evauate the dependency or correlation between a set of variable pairs. These
include correation coefficients, scatter plots and regression andysis (Cullen and Frey, 1999). In
the AuvTool, the sample correlation coefficient is used as an indication of an association

between the sample distributions of sdlected atistics.

The correlation coefficient is caculated with the assumption that both variables are
stochastic (i.e., bivariate Gaussian). It can be obtained by using the following formula (Morgan
and Henrion, 1990):

&, x -0, - V)
Jé CTE R TN (AR &

(2-47)

where,

R = Corrdation coefficient between two variables
X

Variable x samples

=~
1

x|
I

Themeanof X, samples

Yi

Vaiabley samples
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Y = Themeanof Y, samples.

The magnitude of the correlation coefficient isameasure of probabilistic dependency
between two uncertain varigbles. It varies from O (random relationship) to 1 (perfect linear
relationship) or -1 (perfect negative linear relaionship).

The use of asample correlation as an indicator of dependence between two distributions
isapotentidly useful but not perfect approach. If the true dependence is non-linear, then the
sample correlation coefficient may fail to give a strong indication of a potentidly important
dependence. Frey and Rhodes (1998) illustrate the dependence between the mean and standard
deviation, and between the parameters, for selected distributions. For example, the parameters of
the gamma distribution have a strong inverse nonlinear dependence. A sample correlaion
coefficient will not be as sengtive to this type of dependency as, for example, arank corration
coefficient. A feature availablein AuvTool isthe ability to export paired data for the sampling
digtributions of the mean, standard deviation, and the values of both parametersfor each
parametric distribution. Therefore, a user can graph the paired vaues of the bootstrap
replications of the mean and standard deviation, or of the two parameters, to identify and
characterize dependences that are not fully captured by a sample correlaion coefficient.

28  Summary
This chapter has described the technica basis for the dgorithmsused in AuvTool. These

agorithms indude the fallowing:
Plotting of data sets using the Hazen plotting position
Visudization of the CDF of fitted distributions and graphica comparison of these

with the data
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Edtimation of parameters for parametric probability distributions usng MoMM or
MLE approaches

Presentation of empirical step-wise CDFs

Generation of random numbers from empirica step-wise CDFs or from parametric
probability distribution models

Cdculation of test statistics as an aid in determined goodness-of-fit of a parametric
probability distribution to a data set

Edtimation of confidence intervas of the CDF of a parametric probability digtribution
fitted to a dataset and graphica comparison with the dataas an aid in evauating
goodness-of-fit.

Use of bootstrap smulation to characterize sampling distributions and confidence
intervalsfor key satigtics, such as the mean, standard deviation, and parameters of

parametric probability distribution models.
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3.0 AUVTOOL SYSTEM DEVELOPMENT AND IMPLEMENTATION
The methodology for quantifying variability and uncertainty described in Chapter 2 was

implemented in the software tool AuvTooal. In this chapter, we present the design considerations,

development environment and toals, structure design, and the main function modules and

associated main festures of AuvTool.

3.1  AuvTool Software Design Consderations
The primary god of AuvToodl isto provide a user-friendly preprocessor module for the

EPA SHEDS modd which incorporates appropriate algorithms for fitting distributions to model
inputs and for quantifying variability and uncertainty in each input. Therefore, the main concern
in the design and development of AuvTool system is to make the output of AuvTool gppropriate
for use asinput to the SHEDS modd. Because the SHEDS modd involves alarge number of
model inputs, and because variability and uncertainty must be quantified for suchinputs, a batch
andydsfeature was included in AuvTool. Asde from meeting the requirements of the SHEDS
modd, a secondary objective for AuvTool isto make it generdly applicable for quantifying
variability and uncertainty in other quantitative analyss fieds such risk assessment and emisson
esimation. Thus, AuvTool was designed as a stand-alone program.

AuwvTool provides output in aformat of generd gpplication, but also in aformat required
for input to the SHEDS modd. In addition, a future objective for AuvTool isto have capabilities
which can alows users to specify their own models, and to propageate the variability and
uncertainty from modd inputsto model outputs. Therefore, the extengbility and expanson of
the AuvTool was another main design concern. Based on these considerations, an object-
oriented programming technique was used in the development of AuvTool system to promote

modularity, extensbility, and reusability of the source code.
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3.2  Devdopment Environment and Tools
The Windows 98/ME platform was chosen as a development environment AuvTool.

This choice was made to ensure compatibility with the SHEDS modd. The software

devel opment tools used were Microsoft Visud C++, Graphic Server and Spread Active X
controls. The reason for choosing Visud C++ liesin that it not only provides an object-oriented
programming environment, which makes the software more extensble and expandable, but dso
facilitates the development of auser-friendly graphic interface. The Graphic Server and Spread
tools can help to visudize the smulation results and organize the data input and result outputs.

3.3  StructureDesign of the AuvT ool System
Figure 3-1 shows the conceptua design and the relationship between modules of

AuvTool sysem. AuvTool can currently be divided into five groups. Table 3-1 summarizesthe
compostion of the groups and their main functions. Asshownin Figure 3-1 and Table 3-1, the
Data Import/Export group provides data for the Variability and Uncertainty Analysis group. The
andysis results from the Variability and Uncertainty Andlysis group are reported to the
Variability and Uncertainty Resulting Reporting group, and to the Further Andysis group for
further analyss of the sampling didtribution data for the statistics of interest (e.g., mean, standard
deviation, and digtribution parameters). The results from the Further Analysis group are reported
to the Variahility and Uncertainty Resulting Reporting group for summarization. The
modifications of the Random Seed Setting module in the Random Sampling group are passed to
other andysis modules.

34  AuvTool Main Modules
Asshownin Figure 3-1, AuvTooal iscomposed of different function modules. The

following subsections briefly describe the main functions modules and the associated features

that the function modules provide.
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Figure 3-1. The Conceptud Structure Design of AuvTool System

Table 3-1. AuvTool Function Module Summarization Table

O )

Analyzing the
Sampling
Data of
Statistics of
Interests
Module

Group Name Modules Main Functions
Data Entry, Importing and Provides the required data for variability
Data Exporting module and Loading and uncertainty analysis, and exports the
Import/Export Distribution Information module input data for future analysis and other
applications
Random Random Seed Setting module and Sets the random seeds and generates
Sampling Random Sample Generator random samples
module
Variability Analysis-Fitting Implements all simulations and
Variability and Distribution Dataset by Dataset calculations related to variability and
Uncertainty module, Batch Analysis module uncertainty analysis
Analysis and Uncertainty Analysis module
Further Analyzing the Sampling Data of | Does further analysis of the sampling data
Analysis Satistics of |nterest Module of interests of statistics from bootstrap
simulation
Variability and Variability Analysis Result Provides summarization tables for user’s
Uncertainty Reporting module and Uncertainty variability and uncertainty analysis cases
Result Analysis Result Reporting module
Reporting
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3.4.1 DataEntry, Importing and Exporting Module
The Data Entry, Importing and Exporting module provides a data sheet Smilar to a

gpreadsheet for usersto input or output data. In this module, users can enter data from the
keyboard, load an existing AuvTool format datafile, and import a Microsoft Excel 97 datafile or
tab-delimited text files from other gpplication programs into the main data sheet. In the data
sheet, AuvTool specifiesthat each column represents one data set, and users can have multiple
data sets by usng multiple columnsin the input format. Users can name each dataset. The
module automaticaly counts the number of data pointsin a data set and logicaly checksthe
users inputs. For example, if there are some invaid numerica vaueinputs, AuvTool will

prompt the user to correct their inputs before they can do variability and uncertainty analysis.
This module alows the user to save their datainto an AuvTool file format or to export their data
to an Excd file or tab-ddimited text file. The datain the module will be used in the other
andyss modules as abasis of varigbility and uncertainty anayss.

3.4.2 Loading Digribution Information Module
It often hagppens that users can obtain distribution information for some variables from

some other sources such as technicd reports, while no origind data for those varigbles are
available. However, in this Stuation, it is gtill possible for usersto do uncertainty andysis by
using bootsrap smulation if they have sufficient information about the distribution describing

the varidble. Thisinformation includes the type of parametric distribution, the parameter vaues,
and the sample sze. Theimplementation of the Loading Distribution Information module
enables users to complete uncertainty analysis for this Stuation. This module dlows usersto
provide the digtribution information from the keyboard, from an existing AuvToal disk file, or
from other file formats such as Excd. The information is passed to the batch analysis module to

do uncertainty andyss. Currently, the module alows users to provide common single
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component parametric digtributions. The digtribution modes include normd, lognormd,
gamma, beta, Weibull, uniform, and symmetric triangle distributions.

3.4.3 Random Seed Setting and Random Sample Generator Modules
By default, any andysis modules will use the default random seed provided by AuvTool.

However, in some Stuations, users want to change the random seed for their needs. For
example, they want to check the repeatability of smulation results for different random sample
series. Keeping the same seed will help users to duplicate the smulation results. The Random
seed setting module implemented in AuvTool provides options for usersto kegp or modify the
default random seed. The choice of random setting in this module is passed to al other modules.
AuvToal aso provides arandom sample generator module, in which users can generate random
samples by specifying the corresponding distribution information and the number of random
samples they want to generate. This module can generate random samples based on an empiricd
digribution. The results generated in the module can be easily copied or exported to other
application programs, for example, Excel or Notepad.

3.4.4 Variability Analyss-Fitting Distribution Dataset by Dataset M odule
The variability analysis-itting distribution dataset by dataset module automaticdly ligts

the data sets needing to be analyzed based on the data that users provide in the data entry,
importing and exporting module. In the module, users are able to perform variability andyss
data st by dataset.  This modules provides seven distribution types which include norma,
lognormd, beta, gamma, Weibull, uniform and symmetric triangle distributions that can befit to
adaaset, and (in most cases) achoice of two parameter estimation methods, including method
of matching moments (MoMM) and maximum likelihood estimation (MLE ).

The user can choose the K-S and A-D datistical goodness-of-fit tests, where gpplicable,

to help in choosing a best fitting parametric digtribution for a particular dataset. When users
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select adata set to anadyze, the module allows users to choose the parameter estimation method
and the preferred distribution type. The data set and fitted distribution will be graphically and
ingantly visudized, which will help usersto judge if the distribution they choseisagood
representation of the data set or not. The K-Stest and A-D datistical test results are presented on
the right side of the user interface, which shows the vaue of the caculated test Setigtic; the

critica vaue of the test satistic and whether or not the test was passed. If the users find that no
parametric digtribution offers a good enough fit to represent a data set, they can choose an
empiricd digribution. The decisons made viathe module provide abasis for uncertainty

andysis as described in Section 3.4.6. The variability analyss results in the module are reported

to the variability analysis reporting module.

3.4.5 Batch AnalysisModule
The batch analysis module isa core onein the AuvTool. Based on data provided in the

data entry, importing and exporting module and the distribution information in the loading
distribution information module, the batch analysis module autométicaly generates the control
options for each data set or variable being andyzed. In the sheet insde the module, each row
represents a data set or avariable; any choices and actions made on the selected row will only be
effective for the data set or variable on the row.

For any data sets or variables with origind data, the program will set “Auto” asthe
default option in the column of Digribution Choice. The user can modify the default option to
one of the specific digtribution types listed in the Didribution Choice combo box. “Auto” isnot
adigribution type, but an option, in which the user lets the program automatically choose agood

fit for the sdlected data s&t.
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For those cases that do not have origind data, thereisno “Auto” option available, and
digribution information is from the data provided in the loading distribution information
module. Users cannot modify the distribution type in these cases.

The module dso alows users to choose parameter estimation methods. By defaullt, the
program will choose MoMM for cases with original data. For those cases without origina data,
and if no information is available for the parameter estimation methods, the program will mark
“NA” on the row of the dataset. However, in uncertainty analys's, the program will by default
assign MoMM to these cases. The module provides afeature to graphicaly display the fitted
distribution and the data set. Another main feature of the module is thet it dlows usersto
visualy compare different distributions fitted to a data set by graphicaly showing dl reasonable
fitted distributions in the same window, which will help users to choose a good fit.

The main advantage of thismodule isthat not only it coversdl festuresimplemented in
the variability analysis-fitting distribution dataset by dataset module, but o it provides
features of automatic batch variability and uncertainty andysis, visuad comparisons of different
distribution types fitted to a data set, and uncertainty andyssfor the varigbles without origina
data. Inthe module, if users prefer to use the default settings for al data sets andyzed, they do
not need to make any choice or to go to any other analysis modules, but they till can complete
ther variability and uncertainty analyses.

The program will automaticaly help usersto choose best fits and to do uncertainty
andydss. Thisfeature will be very helpful if users have alarge number of data setsto be
andyzed smultaneoudy. It must be pointed out that autometically choosing a best fit is based
on apecified criterion. The criterion used in the AuvTool 1.0 isthe minimum K-Stest value,

However, it must dso be mentioned that a best fit in terms of the minimum K-S test satistic
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value does not mean thet thefit is the most reasonable one. In fact, users are cautioned that blind
gpplication of the K-S criterion to choosing a best fit may lead to selections of parametric
digtributions that are less than ided fitsin ways not captured by the K-S gatigtic or that may not
have the most relevant theoretical underpinnings.

As mentioned above, the batch analysis module alows users to do uncertainty anayss
based on the users' own judgments or sdlections. Any choices made via the module will be
passed to the uncertainty analysis-bootstrap simulation module to do bootstrap smulations, and
will be reported to the variability analysis-reporting module.

3.4.6 Uncertainty Analysis-Bootstrap Simulation Module
The uncertainty analysis-bootstrap simulation module features the use of bootstrap

smulation and two-dimensiond Monte Carlo smulation for smultaneoudy quantifying

variability and uncertainty. The smulations are based on the choices of digtribution types and
parameter estimation results from the variability analysis-fitting distribution dataset by dataset
module or batch analysis module.

The module dlows users to modify the parameters for bootstrap smulations. For
example, users can specify the number of bootstrap replications, and the sample sizefor
variability. The program will by default show the probability band graph for the selected
variable or data set when the bootstrap smulation isdone. An example of band graph is shown
in FHgure 2-7 in the Chapter 2. The probability band depicts a plausible range which may
enclosethe “true’ but unknown distribution. For example, the 95 percent probability band may
be thought of as a 95 confidence interva. Thisinterva has a 95 percent probability of enclosing
the true but unknown didtribution. The probakility bands tend to be wider with very small
datasets and/or in Situations with large variation within the available sample of data. From the

probability bands users can obtain a confidence interva for any percentile of the distribution.
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Thismodule dso can graphicdly display the sampling digtributions of the Satidtics of interest for
the selected variable. The sampling digtributions are the basis for constructing confidence

intervals for the satistics. These dtatistics include the mean, standard deviation and distribution
parameters. Because there are no parameters for an empirica distribution, the Satistics for

which sampling digtributions are reported include only the mean and standard deviation. The
module o provides a data sheet to hold the smulation data for the current variable in the data
page of the module where users can export the results to other application programs. The
amulation results from the module will be passed to the analyzing the sampling data of statistics
of interest module.

3.4.7 Analyzing the Sampling Data of Statistics of Interest Module
The sampling digtribution data from bootstrap smulation, which describe uncertainty for

the selected datistics, are often described using an empiricd digtribution. The advantage of
using empirica distributionsis that they do not need any parametric distribution assumptions.
However, apotentid problem isthat thereis alarge data storage requirement to save dl of the
replicate vaues of each atigtic. A parametric probability distribution can aso be used to
represent the sampling digtribution for the gatigtics in amore compact form. For example, in
classcd gatistical theory, the confidence interva for the mean is often described usng anormd
digribution if the sample data are from anorma digtribution or if the sample szeislarge
enough. The use of bootstrgp smulation makes the sampling deta for satistics available for all
other parametric population distribution and eiminates the often restrictive or incorrect
normality assumption imposed upon the sampling digtribution of the mean in case with small
sample sze and skewed data. Therefore, it is often the case that other parametric distributions
besides the normd distribution should be used to represent the sampling distribution data for

datistics such asthe mean. Therole of the analyzing the sampling data of statistics of interest
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modulein the AuvToadl isto implement the further andlyss of the sampling data from the
bootstrap smulations festure.  The batch analyss feature and the further andysis fegture in the
module embody the advantage of the AuvTool over the other commercid software packages.
Thismodule is very smilar to the variability analysis-fitting distribution module. The
main difference is that the former analyzes the sampling data of Satistics from bootsirgp
smulation for achosen variable, and uses a parametric distribution modd to represent the
uncertainty for a datistic, while the later focus on characterizing the variability of avariable
based on an origind data set usng adidribution modd. Another differenceisthat this module
aso has afeature that can automatically help users to choose a best fit to the sampling
digtribution data of a gatistic; while the variability analysis-fitting distribution module does not.
Like the variability analysis-fitting distribution module, the module also alows users to choose
different didtribution types and different parameter estimation methods when they andyze a
detigtic for a sdlected variable or data set. The choices made viathe module will be used to
condruct the uncertainty analyss summary table in the uncertainty analysis result- reporting
module.

3.4.8 Variability and Uncertainty Reporting Analysis M odules
The purposes of the Variability and Uncertainty Reporting Analysis modules are to report

the variability and uncertainty analysis resultsin atabular form and to facilitate export of the
results to other gpplication programs such as Microsoft Excel. The variability analysis result-
reporting module summarizes the variability anadyss results from the variability analysis-itting
distribution module or batch analysis modules. These results include the summarization of the
variable or data set names anadyzed, the number of data points for each variable or data set, the
distribution types representing variability, the corresponding distribution parameters, the

parameter estimation methods, and the K-S and A-D test results. For the beta, uniform and
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symmetric triangle distributions, the A-D test is not available, and the corresponding cdllswill be
marked “NA”.

The uncertainty analysis result-reporting module summarizes the 95 percent confidence
intervals for the mean, sandard error, and the variable or data set names andyzed, the number of
bootsirap replication for each variable or data set, the distribution typesfitted to the sampling
digtributions of the statistics of mean, standard error and distribution parameters, and the K-S and
A-D datigtica test results for those distributions. The module aso reports dl pair-wise sampling

data combinations of dl possble atistics and the correlation coefficients between dl satistics.

75



76



40 VERIFCATION OF AUVTOOL

A key task of this project was a comprehensive eva uation and refinement of AuvToal.
The evauation was based upon extensive testing of the software by severd persons who were
not involved in the development of the software. These persons condtituted a verification test
team. The team was comprised of three people. The testing was done according to a predefined
testing plan.

The scope of the testing included: (1) evauation of the Graphicad User Interface,
including identification of any indtabilities or errors associated with the interface; (2) verification
of methods for input and output of data worked correctly; (3) verification of agorithms for
generating random numbers from each type of distribution (i.e. normd, lognorma, gamma,
Weibull, beta, uniform, symmetric triangle, uniform, and empiricd); (4) verification of
agorithms for estimating the parameters of the parametric distribution, including the maximum
likelihood estimators and the method of matching moment estimators; (5) verification of the
results of bootstrgp smulations for confidence intervas of the mean and, in selected cases,
confidence intervals for the standard deviation; (6) verification of agorithms for the goodness-
of-fit tests, with afocus on the K-Stest; and (7) verification of the numericd sability of the
bootstrap smulation results.

Any problemsthat were identified by the verification test team were reported to the
individua responsible for software development, and new versions of the program were
provided that corrected the identified problems. The program was found to perform well in
terms of the graphica user interface and regarding the input and output of data.

This chapter focuses on documentation of items (3) through (7) in the list dbove. These

items pertain to random number generation, parameter estimation, evauation of bootstrap
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smulation results for sdlected confidence intervals for selected statistics, goodness- of-fit testing,
and the numerica sability of bootsirap results. The details of the specific testing gpproach for
each of these five items are described in the following sections.

4.1  Verification of Random Number Generation for Probability Distribution Models
AuwvToal includes dgorithms for generating random numbers from specified probability

distribution models, including the normd, lognorma, gamma, Weibull, beta, uniform, symmetric
triangle, and empiricd didributions. The objective of the first test gpplied to AuvTool wasto
verify that the dgorithms for generating random numbers from a specified probability
distribution perform correctly. The random number generation agorithms are a key component
of AuvTool. For example, they are the basis for performing bootstrap smulation.
The evauaion of the performance of the random number generation dgorithms was
based upon the following approach:
1. Specify an assumed population digtribution. In the case of the parametric
distribution, this required specification of parameter vaues. In the case of the
empirica didribution, this was done by specifying a data .
2. Generate 1,000 random numbers from each distribution.

3. Graphicdly compare the 1,000 random numbers from Step 2 with the respective
Specified digtribution from Step 1.

4. Peform aquantitative satistical goodness-of-fit test in which the random samples are
compared to the specified digtribution.

5. Makeafinding asto whether the randomly generated numbers are an acceptable
sample from the specified digtribution.

The results of each of these steps are described in the following subsections.

4.1.1 Specifying Parametersand Generating Random Numbers
For each of the seven parametric probability distribution models, two parameters have to

be specified. In testing the random number generators for each of the parametric distributions, it

was desired to include test cases with different ranges of variability in order to evauate the
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robustness of the random number generator with respect to relative variation. Relaive variation
was quantified based upon the coefficient of variation (CV), which is the standard deviation
divided by the mean.

For each of the seven parametric distributions, parameters were specified for three
coefficients of variation, as summarized in Table 4-1. In most cases, the coefficients of variation
used were 0.5, 1.0, and 2.0. Thesethree vaues of CV were used for the normal, lognormd,
gamma, Weibull, uniform, and symmetric triangle didtributions. For these same six
digtributions, the assumed mean in each test case was 1.0. The parameters of the distributions
associated with a mean of 1.0 and the assigned CV were caculated usng MoMM. The MoMM
parameter estimation method is described in detail in Chapter 2. The calculated parameter
vauesare givenin Table 4-1. In an independent check by members of the study team who were
not involved in writing Chapter 2 or in coding the AuvTool software, the definitions of the
probability distribution models and of the parameter estimation equations were verified by
comparison to published information in sources such as Morgan and Herrion (1990).

Thevaues of CV used for the beta distribution were 0.2, 0.5, and 0.8. These vaueswere
chosen because the two- parameter beta digtribution is defined only for afinite range of vaues
fromOto 1. Therefore, the standard deviation for a beta distribution is not unbounded. A mean
vaue of 0.5 was sdlected. A judgment was made that the highest value of CV to usefor test
purposes should be 0.8.

For the empirical distribution, one test case was evauated based upon an arbitrarily
generated data set. There were three test cases for each of seven parametric distributions,
resulting in atota of 21 test cases for the parametric distributions and 22 test casesfor dll

digtributions, including the empirica ditribution test case,
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Table 4-1. Parameters of the Tested Distributions.

Digtributiorf CV® Parameter1® Parameter2®
0.5 1 0.5
Normal 1 1 1
2 1 2
0.5 -0.112 0.472
Lognormal 1 -0.347 0.833
2 -0.804 1.269
0.5 4 0.25
Gamma 1 1 1
2 0.25 4
0.5 2.101 1.129
Weibull 1 1 1
2 0.543 0.575
0.2 12 12
Beta 0.5 15 15
0.8 0.281 0.281
0.5 -0.5 25
Uniform 1 -2 4
2 -5 7
0.5 1 1.225
Symmetric Triangle 1 1 2.450
2 1 4.899

& For normd, lognormal, gamma, Weibull, , uniform, symmetric triangle distributions, mean
equals 1. For beta digtribution mean equals 0.5.

b CV = coefficient of variation, which isthe standard deviation divided by the mean.

¢ Parameter definition are given in Chapter 2, Section 2.2.

For each test case, 1,000 random numbers were generated using AuvTool. Thiswas done
by using the Random Sample Generator feature of AuvTool described in Chapter 7 of the User’s
Guide (Zheng and Frey, 2002). In the case of parametric distributions, random number
generation was done by specifying the type of parametric distribution and the numerica vaues
of the parameters, obtained from Table 4-1, and executing AuvTool to generate 1,000 random
vauesin each case. For the empirica digtribution, a data set was entered to specify the

digtribution. AuvTool was used to generate 1,000 random vaues from the specified empirica

didribution.
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Figure 4-1. Comparison of Random Samples and Specified Normal Distribution, p=1,

6°=0.25

4.1.2 Graphical Comparison of Random Numberswith Specified Distribution

The objective of graphica comparison isto visuaize the degree of match between the

random samples and the corresponding specified distribution. An example of agraphica

comparison isgiven in Figure 4-1 for the case of anorma digtribution with a mean of oneand a

CV of 0.5. The 1,000 random numbers generated from AuvTool are shown asdots. These 1,000

random numbers were plotted using the Hazen plotting position described in Chapter 2. Because

there are SO many data points, they are very close together and appear asif they are a continuous

line except a the ends of the lower and upper tails. The CDF of the normd distribution is shown

asasolidline. The CDF was plotted using afunction for the normd digtribution available in

Microsoft Excel™. Some discrepancy between the random samples and the CDF of the

specified digtribution is expected because of random variation within a data set of afinite sample

sze. Thegraphica comparison implies that there is good agreement between the sample of

1,000 random numbers and the specified distribution in this case.
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Graphica comparisonsfor al of the other test cases are given in Appendix A. For dl of
the digributions, including normd, lognorma, gamma, Weibull, beta, uniform, symmetric
triangle, and empirical, there is good agreement between the random sample of 1,000 vaues and
the CDF of the specified digtribution. Thus, the graphica comparison provides a quditative
indication that the random number generators are performing properly.

4.1.3 Goodness-of-Fit Testsfor Random Numbers
To augment the graphica comparison of random numbers generated from AuvTool and

the specified distributions, quantitative goodness- of-fit tests were conducted. The K-Stestis
applicable to eva uating goodness-of-fit for continuous distributions. Therefore, it was used to
assess the correspondence between the 1,000 random numbers and the specified distribution for
each case pertaining to the normd, lognormd, gamma, Weibull, beta, uniform, and symmetric
triangle digributions. The chi-squared test was used to evaluate the goodness of fit of the
generated random numbers compared to the empirica digtribution. The chi-squared test was
used instead of the K-Stest in the case of the empirica digtribution because the empirica
digribution isdiscrete. Therefore, srictly spesking, the K-S test should not be used to evduate
goodness-of-fit for the empirica distribution. The details of the K-S test are described in
Chapter 2. The verification team reviewed the description of the K-Stest in Chapter 2 and
verified thet it was consstent with information available in the literature.

Theresults for evauation of the goodness-of-fit of the pecified digtributions and the

randomly generated numbers are summarized in Table 4-2 for dl of the parametric ditributions.

The critical value of the K-Stest at the a level for asample Sze of nisexpressed asD? . Inthis
work, the critical level a is set to be 0.05 and the sample size is 1,000. Therefore, the critical

vdueused wasD ™ =0.0430. Thetestispassed if the cdculated value of the test atidtic is

1000
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Table 4-2. Summary of the Results of K-S Test with criticd vaueof D> = 0.0430.

1000

Distribution Mean CV D?
0.5 0.0286
Normal 1 1 0.0256
2 0.0317
0.5 0.0286
Lognormal 1 1 0.0273
2 0.0337
0.5 0.0238
Gamma 1 1 0.0254
2 0.0254
0.5 0.0320
Weibull 1 1 0.0250
2 0.0292
0.2 0.0314
Beta 0.5 0.5 0.0260
0.8 0.0220
0.5 0.0207
Uniform 1 1 0.0375
2 0.0307
0.5 0.0320
Symmdric Triangle 1 1 0.0320
2 0.0320

2 All tests were passed for n=1000, a=0.05, compared to acritical valueof D°2% =0.0430.

1000

less than the critical vaue. As shown in Table 4-2, the calculated values of the test Statistics are
lessthan 0.0430 in dl cases. The largest test statistic value was 0.0375 in the case of the uniform
distribution with CV=1. In most cases, the value of the test statistic was less than 0.03. Based
upon the results of the goodness-of-fit tests, the hypothesis that the data are a random sample
from the specified distribution cannot be rgected. Therefore, the random number generator is
found to perform properly for the parametric distributions.

Although the details of the K-S test are mentioned in Chapter 2, the chi-squared test is
only briefly introduced. Therefore, more detail regarding the chi-sguared test is provided here.
The chi-sguared test was used for the empiricd distribution. The chi-squared test involves

caculating atest gatigtic that gpproximately follows a chi-square digtribution only if the
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hypothesized model cannot be rgjected as a poor fit to the data. The chi-squared test includes
grouping the vauesin to cdlsin which each cell has a least five data points. The probability of
obtaining vaues within the range of each cdll is caculated based on the hypothesized
distribution. Then atest atistic is calculated and evauated. The number of cdlls that should be
used in amatter of judgment. The number of cellsthat should be used can be estimated as

follows

For n <~ 200; k£ﬂ
5

For n >~ 200; k = integer{4" [0.75" (n- 1)?]**}

where: k isthe number of cdls. A test Satidtic is computed as follows:

=~

, & (M -E)
X?=3 ————
AT E
where: M isthe number of data vauesin each cdl: and E isthe expected number of
datavauesin each cdl. Thetest ispassed if the following condition is met (Ang and Tang,

1975):

K (M. - E)?
g Sl
i-1 i

where: X ; isthe vaue the chi square distribution, X | | , a acumulative probability

(1- a).

For the test of the random number generator for the empirica distribution, adata set of
n=1,000 that was Smulated from a uniform digtribution with a minimum of one and a maximum
of 10 was used to specify an empirica digribution in AuvTool. AuvTool was used to generate
1,000 random numbers from the specified empiricd digtribution. The chi-square test was used to
test if the smulated samples obtained from AuvTool and the origind samples that were input to

AuvTool were from the same distribution.

(1)

(4-2)

(4-3)

(4-4)



Table 4-3. Procedure of the Chi-Squared test

Range of Data Range of Data

c [ L U |E°|M°| DY |cC| L u |E°| M| D¢

1 1 115 | 14| 11 0.643 31 5.5 565 | 23| 26 0.391
2 1.15 13 | 24| 21 0375 | 32| 5.65 58 | 16| 16 0.000
3 1.3 145 | 8| 8 0000 | 33| 58 595 | 15| 18 0.600
4 145 16 22| 15 2.227 34| 595 6.1 20| 20 0.000
5 1.6 175 | 17| 17 0000 | 35| 6.1 6.25 | 12| 16 1.333
6 1.75 19 | 12] 11 0083 | 36 | 6.25 64 | 16| 16 0.000
7 1.9 205 | 16| 21 1563 | 37| 64 655 | 13| 15 0.308
8 2.05 22 | 22| 20 0182 | 38| 6.55 6.7 9 | 10 0.111
9 2.2 235 | 17| 19 0235 | 39| 6.7 6.85 | 17 | 17 0.000

10 2.35 25 | 16| 12 1.000 | 40| 6.85 7 13| 11 0.308

11 2.5 265 | 14| 12 0286 | 41 7 715 | 19| 26 2.579

12 2.65 28 | 22| 20 0.182 7.15 7.3 17 8 4.765

13 2.8 295 [ 21| 20 0.048 7.3 745 | 15| 19 1.067

14 2.95 31 | 25| 18 1.960 7.45 7.6 15| 17 0.267

G| R|&|S

15 3.1 325 | 13| 14 0.077 7.6 775 | 19| 11 3.368

16 3.25 34 | 14] 14 0000 | 46| 7.75 7.9 15| 16 0.067

17 34 355 | 22| 24 0.182 | 47 7.9 805 | 14 8 2571

18 3.55 3.7 | 22| 18 0.727 | 48| 8.05 8.2 7 6 0.143

19 3.7 385 | 17| 21 0941 | 49 8.2 835 [ 20| 21 0.050

20 3.85 4 18| 22 0889 | 50 | 8.35 85 | 17| 17 0.000

21 4 415 | 15| 15 0.000 | 51 8.5 865 | 13| 14 0.077

22 4.15 43 | 23| 26 0391 | 52 | 8.65 8.8 15| 22 3.267

23 4.3 445 | 13| 8 1.923 | 53 8.8 895 | 21| 21 0.000

24 4.45 46 | 18| 21 0500 | 54 | 8.95 9.1 14 | 15 0.071

25 4.6 475 | 15| 11 1.067 | 55 9.1 9.25 8 10 0.500

26 4.75 49 | 10| 6 1600 | 56 | 9.25 9.4 22 | 26 0.727

27 4.9 5.05 | 25| 23 0.160 | 57 9.4 955 [ 24| 22 0.167

28 5.05 52 | 16| 20 1.000 | 58| 9.55 9.7 14| 19 1.786

29 5.2 535 | 15| 12 0.600 | 59 9.7 985 | 21| 20 0.048

30 5.35 55 | 16| 14 0250 | 60| 9.85 10 14 | 23 5.786

Totd Chi-Squared test value = sum of D, = 49.45

a Cdl number.
® Number of original data setsin each cell.
¢ Number of smulated data setsin each cdll.
d Di — (Mi - Ei)
E.

In setting up the chi-square test, the number of cells was calculated to be 60 based upon

Equation (4-2). Both the origind and smulated data sets were divided into 60 cells, as shown in
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Table 4-4. Chi-Squared Test for Random Samples and Specified Empirica Didtribution

Hypothesis Hy: Smulated sample comes from the origind empirica distribution
Test gatidtic: 49.45

Degrees of freedom: | 59

Sgnificance leve: 0.05

Critical vaue™ 77.93

Conclusons. Accept Hy

& Cdculated by MATLAB function chi2inv (0.95, 59).

Table 4-3. The endpoints of each cell were determined based upon dividing the domain of the
digtribution into equa intervas. Although the width of each cdl was the same, there was
random fluctuation regarding the number of data pointsin each cell both for the origind and for
the smulated data. The test Satistic was cdculated by summing the vaues obtained for each
cdl for the quantity D;, as shown in Table 4-3. The test statistic was found to be 49.45. In
contrast, the critica vaue for the test satistic, based upon 59 degrees of freedom and a
sgnificance leve of 0.05, was found to be 77.93. The critical vaue was estimated using the
chizinv function in MATLAB. A summary of thetest resltsis given in Table 4-4. Becausethe
vaue of the test Satidtic isless than the criticd vaue, the empiricd didribution specified in
AuvTool cannot be rejected as an ingppropriate fit to the data generated by AuvTool. Therefore,
the random number generator for the empirica distribution was found to perform properly.

4.1.4 Summary of Resultsfor Verification of the Random Number Generator
Based upon graphica comparisons and quantitative statistica goodness-of-fit tests, the

random number generators for the norma, lognormal, gamma, Weibull, beta, uniform,
symmetric triangle, and empirica distributions were verified to perform properly. Therefore,
AuvTool was demongtrated to correctly smulate random numbers for these distributions.

4.2  Verification of Parameter Estimation Algorithms
The objective of the work related to verification of parameter estimation agorithms was

to verify that the algorithms for parameter estimation incorporated into AuvTool work correctly.
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In order to verify the parameter estimation agorithms, it is necessary to use both AuvTool and
independent software and/or calculations to estimate parameters based upon the same data sets.
The parameter estimates obtained from AuvTool and the independent methods were then
compared. If the results were the same or sufficiently smilar, then the results of AuvTool were
deemed to be correct. A key assumption in doing such comparisonsis that the correct dgorithms
are used in the independent software and/or caculations. A key limitation in identifying

software to use for comparison purposesis that the parameter estimation agorithms are often not
well-documented. For example, two popular software tools for probabilistic andyss are Crystd
Bdl and @Risk. However, in many cases, the definition of the PDF and the parametersis not
given, and/or information regarding the agorithm used for parameter estimation is not given.
Therefore, it was not possible to rigoroudy compare parameter estimation results from Crysta
Bal and @Risk with those from AuvTool.

4.2.1 Method for Verification and Comparison of Parameter Estimates
As documented in Chapter 2, AuvTool incorporates both MoMM and MLE parameter

estimation methods for the parametric probability distribution models, with afew exceptions.

The exceptions are that the MLE method is not available for the uniform ditribution, and

MoMM is not included for the Welbull digtribution. With these exceptions, the verification task
included development of dternative, independent methods for caculating both MoMM and MLE
parameter estimates for selected data sets.

In order to test and verify the implementation of the parameter estimation dgorithms
given in Chapter 2, severd sepswere followed. Thefirst wasto verify the correctness of the
equations given in Chapter 2 by reviewing the literature. Thiswork was done by the
independent verification team, and not by the persons who implemented the software or who

wrote Chapter 2. The equations reported in Chapter 2 were verified to be accurate. A second
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step was to develop an independent method for calculating the parameters of distributions based
upon the algorithms given in Chapter 2. The gpproach chosen for the independent calculations
was to perform parameter estimation using Excel soreadshests.

In the case of MOMM, the MOMM estimators were programmed into an Excel
spreadsheet and parameters were estimated for severa sets of test data. 1n the case of MLE, two
different types of caculaionswere done. For the norma and lognorma distributions, andytica
solutions for the MLE estimator are given in Chapter 2 and these were implemented into Excdl.
For the gamma, Weibull, beta, and symmetric triangle digtributions, the log-likelihood function
was entered into Excel. The MLE parameter estimates were obtained by optimization. The
"Solver" in Excd was used in finding the optima solution for the parameter estimates.
Soecificdly, the maximum vaue of the log-likelihood function was found by varying the two
parameters usng the Solver. The log-likeihood functions for the gamma, Weibull, beta, and
symmetric triangle digtributions are given here:

Log-likdlihood function for the gamma distribution

J(a,b) = - n{a In(b) + |n[G(a)]}+§n1 }(a -1)In(x,) - X?y (4-5)
i=1 T b
where:
n = the number of data points
J = Log-likdlihood function
Ga) = thegamma function of a,
a, b =theparametersin the gammadisribution.
Loglikdlihood function for the Weibull digtributior
J(a,b) = - nin(2 )+ 2 i(b 1) In(—) (—) ﬁ (4-6)
=11

where:
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a, b =thepaametersin the Webull digtribution.
Loglikelihood function for the beta distribution:

+§i[(a—1)|nxi+(b-l)ln(l-xi)] 4-7

’ i=1

J(a,b)=nlIn

where:

B = Beta function,

a, b =the parametersin the beta distribution.
Loglikdlihood function for the symmetric triangle didribution

b - |x. -

-4

n
~

La,b)= O

0y “o

where:
a, b =theparameersin the symmetric triangle digtribution.
The caculations that were performed in Excel are referred to as "Manua™ calculations

because it was necessary for the verification team to enter the data and the estimation agorithms
into Excd, and to manually execute the Solver in the cases of the optimization solution.

In addition to the use of Excel as a platform for performing independent cd culations of
parameter values, an attempt was made to use both Crystal Ball and @Risk. Both programs have
a capability to estimate parameter values from data sets. However, as previoudy noted, these
two programs are not sufficiently documented with regard to the definition of the PDF or of the
parameter estimation methods employed for a particular digtribution.  Although AuvTool uses
definitions of the PDF that are found in the literature, there are dternative ways to define many
digributions thet in turn lead to different parameter definitions and different numerica vaues of
the parameters. For example, the parameters of the lognormal distribution can be defined asthe
arithmetic mean and sandard deviation of log-transformed data, asisdonein AuvTodl.
Alterndtively, one could define the lognorma distribution based upon the geometric mean and

geometric standard deviation, or based upon the arithmetic mean and arithmetic Sandard
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deviation of untransformed data, or other approaches (e.g., Smdl, 1990). Smilarly, the
parameters of the gamma distribution can be defined in avariety of ways. In the absence of
knowledge of the actua definitions used in Crystd Bdl and @risk, it isquite likely that
differencesin parameter estimates obtained with these two software in comparison to AuvTool
could be because of different definition.

Even if the definition of the PDF and the parameters of adigribution isthe samein
different software tools, the numerica vaues obtained for the parameters can be different if
different parameter estimation methods areused.  Although AuvTool contains two of the most
common parameter estimation agorithms, there are other methods that may have been used in
software such as Crystal Ball and @Risk for parameter estimation. For example, probability
plotting methods are sometimes used by practitioners to estimate parameters, dthough this
gpproach is not recommended (e.g., Cullen and Frey, 1999). Thus, without knowledge of the
specific parameter estimation used in Crysd Bal and @RisK, it is possible that any differences
compared to AuvTool could be because of different parameter estimation methods, and not
because of an error in AuvTool. Therefore, Crysta Ball and @Risk could not be used to verify
AwTool.

Even though Crysta Bal and @Risk are poorly documented with regard to the
definitions of the PDF, the definitions of the parameters, and/or the specifics of the parameter
estimation agorithms used for each of the parametric distributions tested, a choice was made to
include comparisons of Crystd Ball and @Risk with AuvTool were possible. The reason for
doing s0 isthat many practitioners commonly use Crysa Bdl and @Risk. Therefore, if a
practitioner were to estimate parameters for a given data set with either of these two tools and

aso with AuvTool, there may be stuations in which different results would be obtained because

90



of undocumented differencesin definitions and dgorithms. Thus, it was deemed usgful to
identify Stuationsin which such differences occurred even though the differences could not be
explained a thistime. It isrecommended that developers of commercia software should
properly document the definitions of PDFs, parameters, and agorithms used for parameter
estimation.

Because the random number generator was verified in Section 4.1, the random number
generator of AuvTool was used to generate data sets of sample sizes 10, 20, and 50 for usein the
parameter estimation algorithm testing. These data sets are given in Appendix B.

422 Resaultsof Parameter Calculations

The reaults of cdculations for parameter estimates from AuvTool, manud cdculations
performed in Excdl, and @Risk and Crysta Ball (where gpplicable) are given in Tables 4-5
through 4-11 for the normd, lognormal, gamma, Weibull, beta, uniform, and symmetric triangle
digtributions, repectively. Each table shows the results obtained with three different test data
sets of sample sizes 10, 20, and 50.

For Crystd Ball, definitions of the PDF and of the parameters are not given in either the
user manud or hep files. For @Risk, some parameter definitions are the same asthose used in
AuvTool, while the others are different from AuvTool. The comparisons of the PDF definitions
in @Risk are discussed case by case in the following paragraphs. However, for al cases, thereis
no documentation of the parameter estimation methods used in @Risk or Crysta Ball. Therefore,
for al cases, it is not known whether @Risk and Crystd Badl used MoMM or MLE estimates, or
whether other methods are used instead (e.g., probability plotting, approximate solutions for
MLE, etc.).

The results for the normd digtribution in Table 4-5 include parameters estimated using

MoMM in AuvTool and manualy using Excel asthe caculation plaiform. The results of these
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Table 4-5. Estimated Norma Parameters

Sampleszen=10 Sample sze n=20 Sample sze n=50

Method | Software m S m S m S
MoMM?® | AuvTool 0.241 0.683 1.067 0.522 1.036 2.007
Exce 0.241 0.683 1.067 0.522 1.036 2.007
MLE’® | AuwTool 0.241 0.648 1.067 0.509 1.036 1.987
Excel 0.241 0.648 1.067 0.509 1.036 1.987
@Risk 0.241 0.683 1.067 0.522 1.036 2.007
Crysd Bdl 0.83 0.25 1.20 1.44 1.10 2.06

& Method of Matching Moment.
® Maximum Likelihood Edtimates,
two sets of parameter estimates are identicd. Therefore, it is verified that the parameter
etimation equations for the mean and standard deviation are implemented correctly in AuvTool
and that they provide the correct MOMM estimates. Similarly, the same parameter values were
obtained for MLE using AuvTool and the manud cdculation method implemented in Excdl.
Because MOMM and MLE are based upon different approaches to parameter estimation,
the values for the standard deviation parameter for a given data set are not the same when
comparing the two methods. It is expected that MLE will give adifferent estimate for the
standard deviation than does MOMM. In the case of MOMM, the standard deviation of the
distribution will be the same asthat of the data. In the case of MLE, the standard deviation of
the distribution is associated with the best fitting distribution that maximizes the likelihood
function based upon the observed data vaues. Thus, the digtribution estimated using MLE will
have centrd moments different from that of the origind data.
For comparison purposes, parameter estimates obtained from @Risk are shown. @Risk
has the same PDF definition as the one used in AuvTool and dso reported the same result asthe
AwTool MOMM edimates. Therefore, dthough not documented, it islikely that @Risk isusing

the same MOMM parameter estimation method as AuvTool. Parameter values obtained from
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Table 4-6. Edtimated Lognorma Parameters

Sample szen=10 Sample sze n=20 Sample sze n=50

Method | Software Minx Sinx Minx Sinx Minx Sinx
MoMM | AuwTool -0.233 0.296 -0.270 0.947 -0.664 1.229
Excd -0.233 0.296 -0.270 0.947 -0.664 1.229
MLE | AuwTool -0.233 0.306 -0.235 0.847 -0.782 1.261
Excd -0.233 0.306 -0.235 0.847 -0.782 1.261
@Risk Reject® Reject® -0.401 0.981 -0.505 1.106
Crystd Bdl® 0.83 0.26 0.66 0.38 1.01 2.00

@ Rejected the distribution as a candidate fit.
P The definition of the parameters of the lognorma distribution in Crystal Ball is not available.

Crysta Bdl are based upon unknown parameter definitions and an unknown parameter
estimation agorithm, and they do not correspond to any of the other values shown in Table 4-5.

For the lognormal ditribution, manud caculations performed in Exced verified that
AuvTool correctly cdculated the two parameters using both MoMM and MLE. Parameter
vaues cdculated in @Risk and Crystd Ball were different than those obtained from AuvTool.
Since the parameter definitions and agorithms used in these two softwares were not sufficiently
documented, the basis for the difference could not be determined. @Risk would not estimate
parameters for the smalest dataset. @Risk has afeature to automaticaly choose a"best” fit
digtribution, and it does not provide an option to alow auser to arbitrarily fit adigtribution to a
dataset. Therefore, it was not possible to estimate the parameters for alognormd digtribution for
the data set with n=10.

For the gamma digtribution, the results in Table 4- 7 demonstrate exact agreement
between AuvTool and the manua calculations performed using Excd for the MoMM parameter
estimates. For the MLE parameter estimates, the results from AuvTool and from the calculations
in Exce were smilar in al cases and were identical in some cases. The reason for the smdl
differences (e.g., AuvTool estimate of 0.695 for the second parameter versus amanualy

cdculated vaue of 0.694) can be attributed to the fact that a numerica optimization method was
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Table 4-7. Egstimated Gamma Parameters

Sampleszen=10 Sample sze n=20 Sample sze n=50

Method | Software a a a a a a
MoMM | AwTodl 0.580 1.535 0.956 1.16 1.11 0.763
Excdl 0.580 1.535 0.956 1.16 1.11 0.763
MLE AuwTool 0.852 1.05 0.948 1.17 1.22 0.695
Excdl 0.886 1.01 0.948 1.17 1.22 0.694
@Risk Reject Reject Reject Reject 1.141 0.738
Crystd Bdl® 0.05 1.98 0.07 2.06 0.01 0.93

& The definition of the parameters of the gammadistribution in Crystal Bdll is not available.

used in both AuvTool and in Excel. The numerica optimization method has a tolerance within
which convergence is assumed. The tolerance can lead to some differencesin the value of the
log-likelihood function, and in the parameter vaues, a which the numerical method converges
on asolution. The differencesin the results for AuvTool and the manud caculation results are
relatively smal. Therefore, it is concluded that the AuvTool MLE parameter estimates were
verified.

For comparison purposes, gamma distribution parameter estimates obtained from @Risk
and from Crystd Bdl are shown. @Risk did not select the gamma didtribution as the "best” fit
for the data sets of sample sizes 10 and 20. Therefore, parameters for agamma distribution
could not be estimated for these casesin @Risk. The parameter vaues obtained from @Risk are
amilar to, but not the same as, those obtained by AuvTool and the manud caculaion method in
Excd. @Risk hasthe same parameter definitions as AuvTool, but the parameter estimation
method is undocumented. It islikdy that @Risk uses a different parameter estimation method
than the onesavallablein AuvTool. The parameter estimates from Crystd Bdl are substantidly
different. Itislikely that Crystd Bdl is usng adifferent definition of the PDF, different

definitions of the parameters, and/or a different parameter estimation method.
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Table 4-8. Esimated Weibull Parameters

Sample szen=10 Samplesze n=20 Sample sze n=50
Method Software a a a a a A

Regresson | AuvTool 0.824 0.942 1.10 0.938 0.903 1.09

MLE AuvTool 0.835 0.889 1.09 0.964 0.885 1.12

Excd 0.835 0.889 1.09 0.964 0.885 1.12

@RIk Reect | Rgect | Rgect | Rdect | Rdect | Rdect

Crysd Bdl® 0.01 0.76 0.02 1.07 -0.01 0.88

2The definition of the parameters of the Weibull distribution in Crystal Ball is not available

For the Weibull digtribution, AuvTool uses a regresson method based upon probability
plotting and MLE as the parameter estimation methods. The MLE results from AuvTool were
reproduced exactly in the manud caculations performed using Excd. The MLE results are
amilar to, but not the same as, those obtained from the regresson method. The regression
method is not expected to produce the same reaults, and the differences in results between the
regresson and MLE methods are considered to be within the range of expected differences.
Therefore, the parameter estimation methods for the Weibull distribution are deemed to have
been verified. For comparison purposes, results obtained with @Risk and Crystd Bdll are
shown. @Risk did not choose the Weibull distribution as the "best” fit to the three data sets
used; therefore, it was not possible to obtain parameter estimates for the Weibull distribution
using @Risk. Crystd Ball produced parameter estimates that were very different from those of
AuvTool and the manud cdculation. Because documentation of how Crysta Ball cdculates the
parameter estimates, and regarding the definition of the PDF and the parameters, was not
available, it is not possble to explain the differences.

The MoMM and MLE parameter estimates for the beta distribution obtained from
AuvTool were verified by comparison to values caculated manualy using Excd. The results
agreed identically for the MOMM estimates. The results agreed within the tolerance of the

numerica optimization methods in the case of the MLE edtimates. @Risk provided estimates for
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Table 4-9. Egtimated Beta Parameters

Sample szen=10 Sample szen=20 Sample sze n=50

Method | Software a a a a a a
MoMM | AuvTool 2.79 2.09 1.20 1.65 0.98 1.07
Excd 2.79 2.09 1.20 1.65 0.98 1.07
MLE AwTool 2.79 2.27 1.10 1.54 1.12 1.24
Exced 2.79 2.27 1.09 1.53 1.12 1.24
@Risk® Diff Diff Diff Diff Diff Diff
Crysd Bal° 1.24 0.24 1.16 1.53 0.86 0.84

#The beta distribution used in @Risk is defined based upon four parameters and is not directly
comparable to the two-parameter beta distribution used in AuvTooal.

P The definition of the parameters of the beta distribution in Crysta Bal is not available.

afour parameter beta ditribution, instead of for the two parameter beta distribution used in
AuwvTool. Therefore, acomparison of the results from @Risk with those from AuvTool is not
meaningful. Crystd Bdl produced different vaues of the parameters than did AuvTooal,

athough the discrepancy appearsto decrease asthe same Sizeincreases. However, sncethereis
insufficient documentation in Crystd Bdl regarding the algorithms used, it isnot possible to
explain the difference.

For the uniform didtribution, only MoMM is used as a parameter estimation method in
AuwTool. Theresultsobtained in AuvTool were verified exactly by manud cdculations
performed in Excd. Results are dso shown for parameter vaues obtained from @Risk and
Crysta Ball for the same data sets. While the results are not identicd, they appear to become
more Smilar asthe sample sizeincreases. The PDF used in @RisK is reported and is the same as
that used in AuvTool. The PDF used in Crysa Bdl is not reported. Because the parameter
estimation methods used in @Risk and Crystal Ball are not documented, no specific explanation
can be offered with regard to differences.

For the symmetric triangle digtribution, the MoMM and MLE parameter estimates

obtained in AuvTool were verified exactly in the manud caculations performed in Excdl.
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Table 4-10. Egtimated Uniform Parameters

Sampleszen=10 Sampleszen=20 Sample sze n=50
Method | Software | a(min) b (max) a(min) b (max) a(min) b (max)
MoMM | AuwTool 0.219 0.925 -0.0154 0.857 -0.0179 0.974
Excdl 0.219 0.925 -0.0154 0.857 -0.0179 0.974
@Risk 0.00866 0.841 -0.0439 0.992 -0.00348 0.959
Crysd Bdl® 0.01 0.84 -0.04 0.99 0.00 0.96

4The definition of the parameters of the uniform digtribution in Crystdl Bdl is not available.

Table4-11. Edtimated Symmetric Triangle Parameters
Samplesizen=10 Sample sze n=20 Sample sze n=50
Method | Software a b a b a b
MoMM | AuwvTool 0.572 0.500 0.421 0.617 0.478 0.701
Excel 0.572 0.500 0.421 0.617 0.478 0.701
MLE | AwTool 0.528 0.570 0.448 0.574 0.480 0.607
Excel 0.521 0.504 0.448 0.574 0.480 0.607

Because neither @Risk nor Crystd Bdl have a capability to estimate parameters for a
symmetric triangle distribution, no comparison with these two programs is shown.

4.2.3 Summary of Parameter Estimation Verification
The parameter estimation methods used in AuvTool for the normal, lognormal, gamma,

Weibull, beta, uniform, and symmetric triangle distributions were verified in cal casesfor which
MoMM and/or MLE solutions areincluded in AuvTool. The primary method for verification
was based upon verifying the definitions of the PDFs and parameter estimation functions with
respect to published equations in the literature, and performing manua calculaions to solve for
parameter vaues for pecific test cases. The manud caculations were implemented in Excd. In
the case of MOMM parameter estimates, exact agreement was observed between the AuvTool
parameter estimates and the manually calculated estimates. In the case of MLE parameter
edimates, the agreement with the manualy calculated estimates was exact in most cases, and

was within the precison of the numerica optimization method in dl cases.
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The results from AuvTool were compared with popular commercidly available software
packages, including @Risk and Cryda Bal. The PDFs and parameter definitionsin @Risk for
the norma, lognorma, gamma, Weibull, and uniform distributions are the same as those used in
AuwTool. However, the parameter estimation agorithms used in @Risk are not documented.
The same results were obtained from @Risk as from AuvTool usng MoMM for the norma
digribution. Therefore, inthiscasg, it islikey that @Risk used the same MoOMM solution for
the parameter estimates as did AuvTool. However, the parameter estimates obtained from
@Risk for the lognormd, gamma, and uniform distributions differed from those obtained from
AuwvToadl, dthough the parameter estimates were often smilar in magnitude. These results
suggest that @Risk employs parameter estimation methods different than those used in AuvTool.
For the Weibull distribution, a direct comparison was not possible because @Risk did not salect
the Weibull distribution as abest fit to the test data. @Risk does not alow a user to over-ride its
choice of abest fit distribution.

For Crystd Ball, there was no documentation available in the user's manua or ortline
regarding the definitions used for the PDFs or the parameters, or regarding the parameter
edimation dgorithms employed. Crystd Ball typicaly provided parameter estimates that were
different from those of both AuvTool and @Risk. The lack of documentation of the technical
bass of Crystd Bdl should be taken into account by serious practitioners when eva uaing
dternative software packages to be used for scientific and/or engineering gpplications.

Overdl, the parameter estimation agorithmsin AuvTool were verified to perform as
intended, and they provided correct parameter estimates for al test cases. Thetest cases
included saven parametric distributions, data sets of three samples sizes, and evauation of both

MoMM and MLE parameter estimation methods. Thus, the testing performed was
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comprehensive and thorough. A user can expect that the parameter estimates obtained with
@Risk will typicaly be smilar to but not the same asthat of AuvTool. A user of Crysd Bdl is
cautioned that insufficient documentation was available to eva uate the parameter definitions or
estimates used, and that results obtained from Crystal Ball were generdly not comparable to
those obtained from the verified AuvTool software.

4.3 Verification of Confidence Intervals

The objective of thistest wasto verify the accuracy of confidence intervas estimates by
AuvTool usng bootstrap smulation for selected gatigtics, including the mean and standard
deviation. The method employed was to compare the AuvTool results with anaytica solutions,
where available. Bootstrap smulation was used in AuvTool to estimate the 95 percent
confidence interva for the mean for each of the fallowing eight digtributions: normd, lognormd,
gamma, Weibull, beta, uniform, symmetric triangle, and empirical.

For the norma and lognormd digtributions, an exact andytica solution for the 95 percent
confidence interval of the mean can be calculated. For the other distributions, the 95 percent
confidence interva of the mean should asymptoticaly converge to the exact andytica solution
as the standard error of the mean becomes small compared to the mean value. The asymptotic
properties of the 95 percent confidence interva for the mean are based upon the centra limit
theorem. The standard error of the mean is influenced by the variahility in the assumed
population distribution, or in the data set, and by the sample Size. Asthe variability decreases,
and/or as the sample size increases, the 95 percent confidence interva for the mean estimated
from bootstrgp smulation should converge to the anaytica solution.

In addition to eva uating the confidence interva solutions for the mean of al digtributions

included in AuvTool, an evauation was made of the solution for the 95 percent confidence
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interva for the sandard deviation of the norma digtribution, for which an anaytica solution is
avalable.
The key steps performed in the test casesincluded the following:

1. Develop data setsto use astest cases. This was done by specifying a population
digtribution and generating random samples of different sample szes (e.g., n=10, 20,
50, 1,000) from the specified digtribution usng AuvTool. The population
digributions for dl seven parametric digtributions were specified for three different
coefficients of variation (eg., CV =05, 1, 2) asgivenin Table4-2. In addition, atest
case was developed for the empiricd digtribution. The data sets are documented in
Appendix B. An explanation of the specia congiderations for setting up test cases of
the beta digtribution is given in Section 4.1.

2. Use AuvTodl tofit digtributions to the test data sets and to perform bootstrap
samulation. Where applicable, obtain results based upon both the MoMM and MLE
parameter estimation methods. The key results obtained were the bootstrap means,

the 2.5™ percentile of the sampling distribution of the mean, and 97.5" percentile of
the sampling digtribution of the mean.

3. Cdculaethe andyticd solution for the 95% confidence interva of the mean
assuming normdlity.

4. Compare the bootstrap results with the andytica solutions
5. For thetest of the confidence interva of the standard deviation for the normal
digtribution, the steps are the same as above with the exception that results from
AuvTool were recorded for the sampling distribution of the standard deviation and
were compared with the andytical solution of the confidence interval of the standard
deviation.
The results of the comparison of the confidence intervas for the mean are givenin
Section 4.3.1. Resultsfor the comparison of the confidence intervals for the stlandard deviation
of the normd digtribution are given in Section 4.3.2. The key findings of the tet of the

confidence intervals obtained from AuvTool are given in Section 4.3.3.

4.3.1 Verification of the Confidence Interval for Mean
The two key components of the verification of the confidence intervas for the mean

obtained from AuvTool include caculation of the analyticd solution and smulation of the

confidence interva in AuvTool using bootstrap smulation. The bootstrap smulation method is
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described in detal in Chapter 2. The method for cdculating the andytica solution of the
confidence interva when normality conditions are satisfied and when the digtribution parameters
are known is briefly summarized here. More information regarding the caculation of confidence
intervas can be found in Ang and Tang (1984), Hahn and Shapiro (1967), and Cullen and Frey
(1999).

Let X1, X2, ....Xn bearandom sample of sample size n from a normd digtribution, N(m
s?). Theanaytica solution of the confidence interva of the mean can be caculated with the

fallowing equation (Casdlla and Berger, 1990):

Mo = (0 Xt ) (4-9)
where:
l-a = the gpecified confidence leve
tap = the pecentile vadue of t-didgribution with (n1) degrees of
freedom.
x = mean of the origind samples.
S = standard deviation of the origina samples

For alognormal digtribution, we can take In(x1), In(x), ....In(X,), as samplesfrom a
norma distribution, N(m s 2), and get the analytical solution of confidence interval of mean for

lognormal digtribution as follows:

ML= CA 0O A N ) (4-10)
where
X = theorigind samples i =1ton.
Snx = thedandard deviation of the variable In(x)

For other digtributions, when the sample sze is large enough and/or when the variability

in the digtribution is smdl enough, the sampling digtribution of the mean asymptoticaly
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approaches anormal distribution based upon the central limit theorem. Thus, it is not expected
thet the confidence intervals for the mean will agree with the andytical solutionsfor smdll
sample sizes and/or large variability in the cases of the gamma, Weibull, beta, uniform,
symmetric triangle, and empirica digtributions. However, it is expected that the solutions for the
95 percent confidence interva for the mean of these digtributions will approach the andlytica
solution as the sample size becomes large and/or as variability in the distribution is reduced.
Thus it is useful to compare the numericd Smulation results from AuvTool with the andyticd
solutions to evauate whether the asymptotic trend that is expected is actualy observed in
practice.

For the normal and lognorma digtributions, samples with sample sizes of 10, 20, 50 and
1000 were generated for each of the three values of CV that were tested, including CV = 0.5, 1,
and 2. 1t should be noted that the mean and standard deviation of the population distribution
from which random samples were generated were specified as per the vdues given in Table 4-2.
However, it is not the case that each random sample has a mean and standard deviation equal to
that of the assumed population distribution. Because of the finite sample sizes and because of
random fluctuation in the sample vaues, the mean and standard deviation of each sample will be
different than thet of the specified population distribution. For the distributions other than the
norma and lognormal, samples with sample sze of 50 and 1000 were generated. Sample Szes
of 10 and 20 were not used for the other distributions because the numerica solutions of the
confidence intervalsin those cases were not expected to be smilar to the normality assumption
of the andytica solution.

For the randomly generated data sets used for each test case, AuvTool was used to

cdculate the 95% confidence interval of the mean based upon bootstrap smulation. Where
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Table 4-12. Absolute 95% Confidence Interval of Mean for Normal Digtribution

Mean Bootstrap 97.5" percentile of
Case of Means 2.5 percentile of Mean Mean
Study | i* | Daa | MOMM MLE | MoMM MLE A° | MoMM MLE AP
10| 087 087 087 | 068 065 066 | 1.12 1.13 1.08
ml, |[20| 107 108 105 | 089 080 084 | 128 1.31 1.30
Cv=05|50| 1.01 101 101 | 083 088 087 | 116 1.16 1.15
10| 098 098 098 | 096 095 095| 1.01 1.01 101
10 074 073 075 | 035 032 032 114 118 117
ml, |20 | 113 114 112 | 069 063 068 | 157 156 1.59
Cv=1 |50 | 102 100 102 | 070 075 074 | 130 130 1.30
10| 096 097 09 | 090 090 090 | 1.03 1.03 1.03
10 | 048 045 045 | -043 -042 -036| 142 1.28 1.33
ml, | 20| 127 132 129 | 031 039 035 | 237 223 218
Cv=2 |50 | 1.04 104 102 | 054 045 048 | 157 158 1.59
10| 1.07 107 107 | 095 093 094 | 120 121 119
dSample size.
b Anaytica solution.

applicable, both MoMM and MLE were used as the basis for the bootstrap smulations.
Equation (4-9) was used to caculate the andytica solutions for comparison to the normd,
gamma, Welbull, beta, uniform, symmetric triangle, and empirical digtributions. Equetion (4-10)
was used to calculate the andytica solution for comparison to the lognorma distribution. The
results from AuvTool and andytica caculations were compared. The results are shown in
Tables 4-12 through Table 4- 19 for the normd, lognorma, gamma, Welbull, beta, uniform,
symmedric triangle and empirica digtributions. In the bootstrap smulation process, the number
of replications used was B=1,000.

The results for the normd digtribution in Table 4-12 reved generdly very good
agreement between the boostrap results obtained from AuvTool and the analytical results for the
95 percent confidence interva of the mean for dl sample Szesand dl vaues of CV that were

tested. For example, in the case of CV=0.5 with n=1,000, the mean va ues obtained from

103




Table4-13.

Absolute 95% Confidence Interva of Mean for Lognorma Digtribution

Mean Bootstrap 97.5"" percentile of
Case of Means 2.5" percentile of Mean Mean
Study n* | Daa | MOMM MLE | MoMM MLE A° | MoMM MLE A®
10 | 083 083 083| 067 0.67 0.67 1.00 100 0.98
mel, 20 | 1.08 109 107| 084 085 0.80 139 132 136
Cv=05| 50 | 1.01 102 100 | 087 088 0.86 119 115 116
10° | 098 098 098] 095 095 0.95 1.01 101 101
10 | 065 065 066 | 046 045 045 089 094 086
mel, 20 | 120 120 112| 071 075 057 198 172 183
Cv=1 | 50 | 1.04 104 100| 078 077 0.73 140 130 135
1021 097 097 09| 091 090 0091 1.04 102 103
10 | 043 043 045| 027 024 024 | 065 077 063
mel, 20 | 143 145 121 | 066 053 015 301 277 270
Cv=2 | 50 | 110 110 102| 068 061 053 174 173 167
10| 095 095 094| 08 083 0.85 1.06 106 1.06
dSample size.
b Andytical solution.

Table 4-14. Absolute 95% Confidence Interva of Mean for Gamma Digtribution

Mean Bootstrap 97.5"" percentile of
Case of Means 2.5 percentile of Mean Mean
Study | r* | Data | MOMM MLE | MoOMM MLE A° | MoMM MLE A°
msl, | 50 | 1.00  1.00 1.00 | 087 087 086 1.15 114 114
cv=05|10®| 099 099  0.99 096 096 0.96 1.02 1.02 102
mel, | 50| 115  1.16 1.15 088 090 0.85 1.49 145 145
cv=1 |10°| 098 098 098 092 093 092 1.04 1.04 104
mel, | 50| 099 099 097 027 024 024 1.62 156 154
cv=2 |10°| 098 098 098 086 086 0.86 1.11 1.10 1.10
Samplesize.
b Andytical solution.

bootstrap smulation using either MoMM or MLE were the same as the mean vaue of the data,

and the 95 percent confidence intervad for the mean was from approximately 0.95 to 1.01 as

edimated by al gpproaches. In generd, the most agreement is expected for the smallest CV and
the largest sample size, and the least agreement is expected for the largest CV and the smdlest

sample size. Thus, the results for CV=2 and n=10 are expected to be the worst among al of the

cases, on average. In generd, the results agreed well for al values of CV and dl vaues of n.
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Table 4-15. Absolute 95% Confidence Interva of Mean for Weibull Digtribution

Mean Bootstrap 97.5" percentile of
Case of Means 2.5 percentile of Mean Mean
Study | n® | Data | Reg® MLE | Reg® MLE A® | Rg® MLE A°
nEl, 50 | 1.00 102 1.00 087 08 087 | 118 1.13 1.13
Cv=05| 10° | 1.00  1.00 1.00 097 097 097 | 1.04 103 1.03
n¥l, 50 [ 091 0.90 0.91 066 067 066 | 117 1.19 1.15
cv=1 | 10° | 1.00 1.00 0.99 094 094 093 | 1.06 1.06 1.06
n¥l, 50 | 166 173 1.66 130 127 130 | 222 209 2.03
cv=2 | 10® | 206 207 2.05 196 195 195 | 218 216 2.16
& Sample size.
P Reg = Regression, and refers to the use of regression analysis as a basis for esimating
digtribution parameters.
¢ Andytica solution.

Table 4-16. Absolute 95% Confidence Interva of Mean for Beta Digtribution

Bootstrap 2.5 percentile of 97.5™" percentile of
Case Mean of Means Mean Mean
Study | P Data | MoMM MLE | MoMM MLE AP | MoMM MLE A"
m=0.5, | 50 0.51 051 051 | 048 048 048] 054 054 054
cv=02 | 10°| 050 050 050| 049 049 049| 050 050 050
m=0.5, | 50 0.54 054 054 | 048 048 048] 061 061 061
Cv=05 | 10®| 050 050 050| 048 048 048| 051 051 051
m=0.5, | 50 0.51 052 051 | 041 040 040| 068 064 0.62
Ccv=0.8 |10®| 050 050 050 | 047 047 047| 052 052 052
dSample size.
b Andytical solution.

Table 4-17. Absolute 95% Confidence Interval of Mean for Uniform Distribution

Mean | Bootstrap 97.5" percentile of
Case of Means 2.5 percentile of Mean Mean
Study | i* | Data | MOMM MLE | MOMM  MLE A°” | MoMM MLE AP
me1, |50 113 113 N/A| 089 N/A  0.89 1.38 N/A 137
Cv=05|10°| 099 099 NA| 094 NA 093 1.04 N/A  1.04
ms1, | 50| 130 130 N/A| 076 N/A 081 1.80 N/A  1.79
cv=1 | 10| 1.02 102 N/A | 092 N/A 091 1.13 N/A  1.13
m1, | 50| 060 059 N/A | -0.28 N/A  -0.28 1.50 N/A 149
cv=2 |10®| 088 087 N/A | 066 N/A  0.66 1.10 N/A  1.10
dSamplesize.
b Andytical solution.
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Table 4-18. Absolute 95% Confidence Interva of Mean for Symmetric Triangle Digtribution

Mea Bootstrap 97.5" percentile of
Case nof Means 2.5 percentile of Mean Mean
Study | r* | Daa | MOMM MLE | MoMM MLE A° | MoMM MLE A°
mel, | 50 | 1.09 1.09 110| 095 098 095 | 122 124 122
cv=05|10°| 098 099 099 | 095 096 095 | 101 1.02 101
ml, |50 092 093 08| 069 062 070 | 115 107 114
Cv=1 | 10°| 1.00 100 098| 094 092 094 | 106 104 106
mel, | 50| 1.38 138 150 | 0.88 1.02 089 | 187 207 187
cv=2 | 10°| 1.00 100 097 | 087 08 087 | 113 112 112
Samplesize.
b Andytical solution.

Table 4-19. Absolute 95% Confidence Interval of Mean for Empirica Distributiorf

Bootstrap th : th :
Case Mean of Means of 2.5" percentile of Mean | 97.5" percentile of Mean
Study | rP Daa AwTool | AwTool Andyticd | AwTool  Anayticd
nl, | 50 1.15 1.13 0.86 0.85 1.43 1.45
cv=1 | 10° 0.98 0.98 0.92 0.92 1.04 1.04

#For empirica distribution, because there is no pecified parametric distribution, we can choose
any random numbers. Here, the same samples with sample size 50 and 1000 are used as gamma
digtribution for coefficient of variation equalsto 1. No parameter estimation is used here.

b Sample size.

For example, for al three values of CV, the AuvTool results for n=1,000 agreed wdll with the

andytica solutions.

In genera, excdlent agreement was found for the results of AuvTool versus the

andyticd solutionsin the case of the lognorma distribution. For n=1,000, the upper and lower

bounds of the confidence intervas agreed with the andytical solution typicaly within two

decimd places. For smdler sample szes and larger variability the results tend to vary from the

andytical solution to some extent. For example, for CV=2 with n = 10, the 95 percent

confidence interval for the mean was estimated to be 0.27 to 0.65 based upon bootstrap

gmulation using MoMM, 0.24 to 0.77 based upon bootstrap smulation using MLE, and 0.24 to

0.63 based upon the andytica solution. Thus, the results were Smilar for the lower bound of the
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confidence interva, but differed somewhat for the upper bound. In contragt, asthe sample size
increased, the concordance between the numerica smulation and the anaytica solution
improved. For example, for CV=2 and n=1,000, the 95 percent confidence interva for the mean
was gpproximately 0.85 to 1.06 based upon al methods.

The results from AuvTool for the 95 percent confidence interval of the mean agreed well
with the andytica solutions for sample sizes of n=50 and n=1,000 for the gamma, Weibull, beta,
uniform, symmetric triangle, and empirical digributions. In particular, for n=1,000, the results
weretypicaly exactly the same or very close for dl distributions and for dl values of CV that
were tested. Thus, the asymptotic performance of the bootstrap solution for the 95 percent
confidence interval for the mean was verified.

4.3.2 Verification of the Confidence Interval for the Standard Deviation of the
Normal Distribution

The anaytica solution for the confidence interva of the standard deviation of anorma
digtribution is based upon the chi square didtribution. Let X, X2, ....X, be arandom sample from
aN(m s?) distribution. According to Casdllaand Berger (1990), the confidenceinterval of

gandard devidion is given by:

R oot o
where:
1-a = the specified confidence levd,
c’,., = the percentile value of c?digtribution with (n1) degrees of freedom at

thelevd of a/2.

Using the same random samples for the norma digtribution that were used in the test of
the confidence interval for mean, the confidence interval for standard deviation was aso tested.

AuvTool was used to caculate the 95% confidence interva of the standard deviation, using
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Table 4-20. Absolute 95% Confidence Interva of Standard Deviation for Norma Distribution

Std. Dev. of
Std. Bootstrap 2.5" percentile of 97.5™ percentile of
Case Dev. of Samples Std. Dev. Std. Dev.
Study | N* | Daa | MOMM MLE | MoMM MLE A°? [ MoMM MLE AP
10 | 034 033 030 | 020 017 024 | 050 043 062
1, | 20 | 052 051 049 | 037 033 040| 068 067 0.76
Cv=05| 50 | 0.50 050 049 | 041 038 042| 060 060 063
10° | 0.49 049 049 | 047 047 047 | 051 052 052
10 | 0.68 067 061 | 035 035 047 | 101 09 1.25
ml, | 20 | 1.04 1.04 098 | 074 071 079 | 138 137 152
Cv=1l | 50 | 1.00 099 097 | 081 074 084| 118 114 125
10° | 0.99 099 099 | 094 094 09| 103 103 1.03
10 | 1.37 131 120| 071 076 094 | 193 173 250
mel, | 20 | 2.09 209 196 | 145 146 159 | 273 268 3.05
Cv=2 | 50 | 201 202 19 | 166 163 168 | 232 238 250
10° | 1.99 199 199 | 190 190 191 | 207 209 2.09
& Sample size.
b Andytical solution.

bootstrap smulation with MoMM and with MLE. Equation 4-11 was used to caculate the
andyticd solution for the 95% confidence interva of standard deviation. The results from
AuvTool and the andyticd cdculation are compared in Table 4-20.

For dl casesin which n=1,000, the results from AuvTool agree dmost exactly with the
andyticd solution. For smdler sample sizes, such asn=10, 20, and 50, MoMM typicaly gives
somewhat wider estimates of the confidence interva than doesMLE. The lower bound and the
upper bound of the confidence interval was generaly underestimated to some extent for the
sndler sample Szes. These results suggest that the MoMM method gives wider coverage of the
confidence interva compared to MLE, which is expected. The results dso suggest that the
numerica Smulation results with the boostrap percentile method may tend to underestimate the
andyticd reaultsin the case of the confidence interva for the standard deviation when the

sampleszeisrdativey smdl.
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4.3.3 Summary of Resultsfor Verification of Confidence Intervals
The verification case sudies demondrate that AuvTool performswell in estimating

confidence intervals for the mean. The results agree well with the andytica solution for the

norma and lognorma distributions, and results for other distributions asymptoticaly approach

the anayticd solution as expected. AuvTool performed wdl in estimating confidence intervas

for the standard deviation of the norma ditribution for large sample sizes. For smdl sample

gzes, the MoMM parameter estimation method resulted in more coverage of the actual

confidence interva than did the MLE method.

4.4  Veification of Algorithmsfor Goodness-of-Fit Tests
The objective of this section isto document the verification of the K-S goodness of fit

test dgorithm that is employed in AuvTool. The procedure used in this task was as follows:

1.

6.

7.

Specify atest data set. The test data sets are documented in Appendix B. Three
sample sizes of n=10, 20, and 50 were used to evauate the robustness of resultsto
different sample sizes.

For each test data set, estimate the parameters of the digtribution using both MoMM
and MLE.

For each digtribution fitted to a given data set, calculate the K-Stest gatidic in
AwTooal.

For each digtribution fitted to a given data s¢t, caculate the K-S gatistic manudly.

Compare the values of the K-S satistic calculated in AuvTool with those cal culated
manudly.

Manudly caculate the critica vaue of the tet datidtic for agiven sample size.

Compare the caculated K-S gatigtic vaues to the criticd vaue of the K-S gatidtic.

The dgorithm used for the K- Stest as documented in Chapter 2 was verified by

comparison to the literature by the verification study team. The K-Stest is gpplicable to

continuous didtributions. Therefore, verification was done for the norma, lognorma, gamma,
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Table 4-21. Verification of K-S Test Results for Normal Distribution

Sampleszen=10 Sample szen=20 Samplesze n=50
Method |  C? D | D%° |R'| D® | D%°|R'| D° | D&°° | R
AwTool | 0.163 P | 0.148 P | 0.0889 P
MOMM —awa [ 0163 | 2%® [P [owa7| % P {o0osea| “1° [
AwTool | 0.161 P | 0.146 P | 0.0872 P
MLE Manud 0.161 0.258 P | 0.146 0.190 P | 0.0872 0.125 P
& Cdculaion method.
b Test satistics.
¢ Critica vaue a a=0.05 significance level.
9 Resuilts: P=pass, F=fail.
Table 4-22. Veification of K-S Test Results for Logormd Didribution
Samplesze n=10 Sample sze n=20 Sample 9ze n=50
Method c? DP DY | RA| D° | D%*° | RY| D | D&*° | R
AwTool | 0.158 P | 0.147 P | 0.118 P
MOMM —Nanua [ 058 | 222 [P [ow7 | 20 p o1 | “1° [P
AwTool | 0.161 P | 0.146 P 100873 0125 | P
MLE Manud 0.161 0.258 P | 0.146 0.190 P | 0.0873 P
& Cdculaion method.
P Test statistics.
¢ Criticd vaue & a=0.05 significance levd.
9 Reslilts: P=pass, F=fail.
Table 4-23. Veification of K-S Test Results for Gamma Didtribution
Samplesze n=10 Sample sze n=20 Sample sze n=50
Method |  C? p> | D%° |R'| p° | D%°|R'| D° | D5 | R
AwTool | 0.154 P | 0112 P | 0.0949 P
MoMM Manud 0.154 0.258 P | 0112 0.190 P | 0.0949 0.125 P
AwTool | 0.193 P | 0112 P 100749 | 0125 | P
MLE Manud 0.193 0.258 P | 0112 0.190 P | 0.0749 P
& Cdculation method.
b Test satistics.

¢ Criticd vaue a& a=0.05 significance levd.

9 Results: P=pass, F=fail.

Weibull, beta, uniform, and symmetric triangle digtributions. The results are shown in Tables 4-

21 through 4-27, respectively, for these saven continuous parametric distributions.
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Table 4-24. Verification of K-S Test Results for Weibull Distribution

Sampleszen=10 Sample szen=20 Sample size n=50
Method ca D° DY |RY| D | D% | RY| D° | D¥*° | R
AwToad | 0.174 P | 0.110 P | 0.0818 P
MMM —Vawa Tox7a | %% P 1omo | % [P ooss| “*° [P
AuwToo | 0.178 P | 0.113 P | 0.0785 P
MLE Manud 0.178 0.258 P | 0.113 0.130 P | 0.0785 0.125 P
aCdculation method.
bTegt gatidtics.
¢ Critica vaue a a=0.05 significance level.
9 Resuilts: P=pass, F=fail.
Table 4-25. Veification of K-S Test Results for Beta Didtribution
Sample sze n=10 Samplesize n=20 Samplesze n=50
Method c? D° DX | R{| Db | DS°| RY| DY | D | RO
AuvTool | 0.212 P | 0.124 P | 0.0833 P
MoMM Manud 0.212 0.258 P | 0124 0.130 P | 0.0833 0.125 P
AuvTool | 0.246 P | 0134 P | 0.0958 | 0.125 P
MLE —Maua [ 0246 | 928 [P T o132 | % [p 00958 3
aCdculation method.
bTegt atistics.
¢ Criticd vaue a a=0.05 significance levd.
9 Results: P=pass, F=fal.
Table 4-26. Veification of K-S Test Reaults for Uniform Digtribution
Sample sze n=10 Sample sze n=20 Sample sze n=50
Method c? DP ¢ |RA| DP Dy | RA| DY D*° | R
MoMM AuvTool 1 0.258 F 0.155 | 0.190 P 0.076 | 0.125 P
Manud 0.290 0.258 F 0.161 | 0.190 P | 0.0877| 0.125 P
aCdculation method.
bTegt statistics.

¢ Criticd vaue & a=0.05 significance levd.

9 Reslilts: P=pass, F=fail.

For the normd, lognormal, gamma, Weibull, beta, and symmetric triangle distributions,

the values of the K-S datitic caculated manualy agreed exactly with the values reported by

AuvTool. Both AuvTool and the manua caculations resulted in the same decision as to whether

the distribution was rejected or not. The values of the K-S gatidtic typically differed depending

on which parameter estimation method was used. This is because the digtribution fitted using
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Table 4-27. Veification of K-S Test Results for Symmetric Triangle Digtribution

Sampleszen=10 Sample szen=20 Samplesze n=50

Method c? DP po”¢ | R DP Do*¢ | R D DL*C | R

AuvTool | 0.210 P 0.125 P 0.130 P

MMM —Vaa Tozio0 | %% P 1o1ms | X [ Tomo | “° [P

Auvtool 0.298 P 0.159 P 0.162 | 0.125 P

MLE Manud 0.298 0.258 P 0.159 0.130 P 0.162 P
aCdculation method.

bTegt gatidtics.

¢ Critica vaue a a=0.05 significance level.

9 Resuilts: P=pass, F=fail.

MoMM is not the same as thet fitted usng MLE. Neither method was consstently better at
fitting a distribution to the data, per the results of the K-S test statitic.

The manudly cdculated results for the K-S gatigtic for the uniform digtribution were
different than those obtained from AuvTool, asindicated in Table 4-26. The magnitude of the
difference in results appears to decrease as the sample Sze increases. The exact reason for the
differenceis not yet known, dthough it is possible that there may be an implementation error in
AuwvTool regarding the K-S test datidtic for the uniform distribution.

The K-S test procedure used in AuvTool was verified by comparison to an independent
software tool. In Crystal Ball, no clear definition was given with regard to how the K-Stest is
implemented. Therefore, it was decided not to use Crystal Bdl for comparison purposes.
Instead, for the standard normd distribution, the result of the K-S test stetistic from AuvTool
was verified by comparison to the “kstest” functionin MATLAB. MATLAB only reportsaK-S
test for the standard norma distribution with specified parameters m= 0,s = 1. In order to test
the K-Stest procedure in AuvTool, the code of the K-Stest with a specified standard normal
distribution was added and the results were compared. Both programs gave exactly the same

results.
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Overdl, the key findings are that AuvTool correctly implements the K-Stest for dl of the
continuous parametric distributions with the possible exception of the uniform distribution.
Future work should be aimed at identifying and correcting the apparent problem in the
implementation of the K-Stest for the uniform digtribution.

45  Evaluation of the Stability of Bootstrap Simulation Results
Bootstrgp smulation is a numerica method based upon random sample for estimating

confidence intervas for selected satistics. Because bootstrap smulation is based upon afinite
number of bootstrap samples, there is some random sampling error inherent in any results
obtained from this method. Therefore, the objective of thistask wasto perform atest casein
which bootstrap smulation was repeated severd times for the same data set and the same
number of bootstrap replications. The results of the multiple bootstrap smulations were
compared to evaduate the variability in results obtained from one smulation to another. The
comparison provides insight into the robustness of the bootstrap results.

The method for performing the eva uation was based upon specifying a random data set
asthe basis for bootstrgp smulation. For this purpose, 20 random values were generated from a
gamma distribution with both scale and shape parameters equa to one. The choice of parametric
digtribution and parameter values was arbitrary. The 20 random values were dl copied into each
of 10 data columnsin the input sheet for AuvTool. Therefore, there were 10 data sets, each with
n=20 and each with the same numerica vaues of the 20 samples. AuvTool was executed to
perform one bootstrap smulation, with B=1,000, for each of the 10 identica datasets. The
results from each of the 10 bootstrap smulations are summarized in Table 4-28 for the mean
vaue and 95 percent confidence interva of four Satisics: mean, tandard deviation, first
parameter, and second parameter. Each row labeled " 1" through " 10" in the table represents one

of the 10 bootstrap smulation results. In the next to last row of the table, the mean of the 10
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Table 4-28. Stability of Bootstrap Simulation Results for the Mean and 95 Percent Confidence
Intervals of the Mean, Standard Deviation, and Distribution Parameters’

Test Mean Std. Dev. 1¥ parameter 2" parameter
No. MP | LS Ut MR oL Ut M LE ut | mM® | L® | u®
1 1.14 | 0.667 | 1.80 | 1.16 | 0.584 | 2.09 | 1.17 | 0.497 | 2.30 | 1.11 | 0.403 | 2.54
2 1.12 | 0.677 | 1.73| 1.15| 0578 | 2.07 | 1.16 | 0.494 | 2.14 | 1.09 | 0.439 | 2.42
3 1.11|0.652 | 1.71| 1.13| 0587 | 2.11 | 1.17 | 0.510 | 2.16 | 1.08 | 0.436 | 2.32
4 1.13|0.673 | 1.71| 1.14 | 0599 | 2.01 | 1.17 | 0.512 | 2.31 | 1.09 | 0.406 | 2.38
5 1.10 | 0.678 | 1.71| 1.12 | 0.557 | 2.06 | 1.17 | 0.494 | 2.29 | 1.08 | 0.402 | 2.45
6 1.14 | 0.664 | 1.74 | 1.15| 0.584 | 1.95 | 1.16 | 0.493 | 2.27 | 1.10 | 0.419 | 2.43
7 1.14 | 0.662 | 1.71| 1.15| 0579 | 2.05 | 1.19 | 0.501 | 2.26 | 1.07 | 0.422 | 2.39
8 1.12 | 0.657 | 1.71| 1.13| 0.598 | 1.96 | 1.19 | 0.530 | 2.25 | 1.07 | 0.398 | 2.31
9 1.110.691 | 1.73| 1.12| 0.550 | 1.94 | 1.14 | 0.513 | 2.26 | 1.12 | 0.410| 2.32
10 [1.13|0.665|1.72|1.13|0.588|1.95|1.16| 0503 | 2.25 | 1.11 | 0.431 | 2.57
Average | 1.12 | 0.664 | 1.73| 1.14| 0580 | 2.02 | 1.17 | 0.505 | 2.25 | 1.09 | 0.417 | 2.41
Ccv® |.013| .017 [.016].012| .027 |[.032.013| .023 | .025 | .016 | .034 | .037

@ Results are based upon 10 bootstrap simulations of B=1,000 for a data set of n=20 obtained
from agamma distribution with scale parameter = 1 and shape parameter = 1.

M = the mean value of the satistic.

¢ L = the lower limit of the 95 percent confidence interval, which is the 2.5th percentile of the
satigtic.

94U = the upper limit of the 95 percent confidence interval, which is the 97.5th percentile of the
datigtic.

© the standard deviation of the 10 test runs divided by the average of the 10 test runs.

vaues given above in the same column is cdculated. For example, the average of the datain the
second column represents the average of the 10 bootstrap smulation means. The last row of the
table displays the coefficient of variation for data in the column above. For example, the
coefficient of variation of 0.013 for the mean implies that the sandard deviation of the 10 values

of the mean estimate of the mean datidtic is 1.3 percent the vaue of the mean estimate.

The coefficients of variaion for each satigtic estimated from the 10 bootstrap smulation results
were lessthan 0.04 in dl cases, and were lessthan 0.02 in Six of the 12 cases given in the table.

The 12 cases include the mean, lower confidence bound, and upper confidence bound for
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each of four gatistics. The mean vaue of the sampling distribution for the mean varied from
1.10 to 1.14 among the 10 bootstrap smulations. These resultsimply that some variability in
results can be expected from one bootstrap Smulation to another. However, the rdatively small
vaues of the CV imply that the bootstrap smulation results are precise to within approximately
two sgnificant figuresin these cases. The precison of the results can be improved by choosing
larger vaues for the number of bootstrap samples (B). Overadl, the results among the 10
bootstrap smulations are found to be reasonably stable.

4.6  Overall Findings Regarding Verification of AuvTool
AuvTool wasrigoroudy evauated with respect to the generation of random numbers,

estimation of parameters of distributions using both MoMM and MLE, confidence intervals
estimated based upon bootstrap smulation, estimation of the K-S statitic, and the stability of
bootstrap smulation results. Factors such as variation in sample sizes and CV were considered
in the evauation of AuvTool. Overdl, AuvTool was verified to perform caculaions correctly,
and the results of AuvTool were found to be robust to different sample sizes and to different
CVs. Therandom sample generation and parameter estimation of AuvTool is correct for dl
cases. AuvTool provides good estimates of the 95 percent confidence interval of the mean for
the norma and lognormd didribution in al cases, and performs as expected for other
distributions with regard to asymptotic convergence of the numerica solution to the andytica
solution as the sample size increases. The K-S goodness of fit test isimplemented correctly and
provides correct resultsin al cases except for the uniform digtribution. The bootstrgp smulation
results were found to be stable for an illudtretive test case. The technicd basis of AuvTool is
more thoroughly documented than many other software packages, such as @Risk and Crysta
Bal. Because of the lack of documentation of other software, it was difficult to make

meaningful comparisons of results from AuvTool to those of other programs.
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50 ANILLUSTRATIVE CASE STUDY USING AUVTOOL

In this chapter, acase study is presented to help illustrate the use of AuvTool. Inthis
case study, the batch analysis feature of AuvTool is demondrated. Results of analyss of
variability and uncertainty are aso presented.

5.1 Introduction to Case Study
There are five datasets with origind data, which are named as “Dataset 17, “ Dataset 27,

“Dataset 37, “Dataset 4” and “Dataset 57, and the sample sizes for the data sets are 10, 20, 50,
1000, and 10, respectively. These data represent five different variables. These data are entered
into the main sheet of the data entry, importing and exporting module. There are dso three
variableswithout origina data for which specified digribution informeation is available. The

three variables are named as “NoData Name 17, “ NoData Name 2" and “No DataName 3",
respectively. The corresponding distribution information is summarized inthe Table 5-1. The
information is provided in the loading distribution information module.

5.2  AuvTool Analysis Results
In the example case study, the batch analysis feature in the AuvTool isused. All default

settingsin AuvTool are kept except that the bootstrap replication numbersfor “NoDataset 27,
“NoDataset 4" and “NoData Name 2" were modified to 500, 1000, 500, respectively (the default
number is 200); and the parameter estimation method was modified to MLE (MoMM isthe
default method) for “NoDataset 1" and “NoDataset 3”. The program automatically chose best
fitsfor the variables with origind data.and for the sampling distribution deta for the statistics of
interest. By invoking the batch analysis module and modifying the corresponding settings as
introduced above, it took afew minutes for the program to report the variability and uncertainty

andysisresultsto the variability and uncertainty analysis result-reporting module.
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Table5 1. Summarization Table of Input Digribution Information for the Variables without

Origind Data
Variable Name Sample Distribution First Second Estimation
Size Type Parameter * Parameter ° Method
NoDataName 1 15 Normal 10 5 Moment
NoDataName 2 20 Lognormal 0.5 0.25 MLE
NoDataName 3 25 Gamma 20.5 10 NA

2 Firgt Parameter: mean for normal, mean of Inx for lognormal, scale parameter for gamma
and Weibull, shape parameter for Beta distributions

P Second Parameter: standard deviation for normal, standard deviation of Inx for
lognormal, shape parameter for gamma, Weibull and beta digtributions

Table5-2. AuwTood Vaiability Anadyss Result Summarization Table

No. Of

Dataset or Data Estimation First® Second KS AD | KSTest | AD test
Variable Name Points | Dist. Type Method Para. Para. Test | Test Passed Passed

Dataset 1 10 Weibull MLE 0.916 3.932 0.150 | 0.182 | Passed | Passed

Dataset 2 20 Lognorma Moment -0.072 0.547 0.148 | 0.465 | Passed | Passed

Dataset 3 50 Lognormal MLE -0.103 0.469 0.087 | 0.285 | Passed | Passed

Dataset 4 1000 | Lognormal Moment -0.130 0.473 0.016 | 0.306 | Passed | Passed

Dataset 5 10 Normal Moment 0.651 0.330 0.137 | 0.206 | Passed | Passed
NoData Name 1 15 Normal Moment 10 5 NA NA NA NA
NoData Name 2 20 Lognormal MLE 0.5 0.25 NA NA NA NA
NoData Name 3 25 Gamma NA 20.5 10 NA NA NA NA

2 Firgt Parameter: mean for normal, mean of Inx for lognorma, scale parameter for gamma
and Weibull, shape parameter for Beta distributions

P Second Parameter: standard deviation for normal, standard deviation of Inx for
lognormal, shape parameter for gamma, Weibull and beta digtributions

Table 5-2 ligs the variability andyds results from AuvToal for the eight variables. The
table includes the digtribution information from the variables without original data. For the
latter, Snce there are no origina data available and no fitting was necessary to be done, no
goodness-of-fit Satidtical tests are needed. Therefore, the relevant cells were marked as“NA” in
those cases.

Table 5-3 shows the confidence intervas of mean and standard deviation for dl of the

variables andyzed. The program can adso summarize the confidence intervas for
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Table5-3. AuvTool Summarization Table for Confidence Intervals of Mean and Standard

Deviation
Mean Mean Std. Deviation
2.5% Mean 97.5% Std. Deviation Std. Deviation 97.5%
Dataset Name Percentile Mean Percentile 2.5% Percentile Mean Percentile
Dataset 1 0.665 0.829 0.983 0.121 0.222 0.323
Dataset 2 0.830 1.06 1.33 0.355 0.604 0.994
Dataset 3 0.886 1.01 1.18 0.350 0.491 0.691
Dataset 4 0.949 0.982 1.01 0.454 0.490 0.532
Dataset 5 0.424 0.650 0.855 0.181 0.316 0.484
NoData Name 1 7.87 10.1 125 3.25 4.88 7.06
NoData Name 2 151 1.70 1.90 0.286 0.421 0.591
NoData Name 3 186 205 223 29.1 44.1 60.8

Table5-4. AuvTool Summarization Table for the Fitted Didribution to the Sampling Data of

Mean Statigtic

No.Of First Second KS KS AD AD
Variable Name B.R.” | Dist. Type | Est. Method Para’ Para.® | Vaue | Passed | Vaue | Passed
Dataset 1 200 Normal Moment 0.829 0.078 0.039 | Passed | 0.187 | Passed
Dataset 2 500 Lognormal Moment 0.062 0.125 | 0.0252 | Passed | 0.438 | Passed
Dataset 3 200 Gamma Moment 193. 0.005 0.0254 | Passed | 0.133 | Passed
Dataset 4 1000 Lognormal Moment -0.019 0.016 0.0203 | Passed | 0.341 | Passed

Dataset 5 200 Moment 17.3 9.35 0.037 | Passed | NA NA
NoData Name 1 200 Lognormal Moment 2.31 0.126 | 0.0441 | Passed | 0.399 | Passed
NoData Name 2 500 Normal Moment 1.70 0.093 | 0.0245 | Passed | 0.253 | Passed
NoData Name 3 200 Normal Moment 205 9.15 0.0435 | Passed | 0.278 | Passed

B.R.%. The bootstrap replication number
P First Parameter: mean for normal, mean of Inx for lognormal, scale parameter for gamma and
Weibull, shape parameter for Beta didtributions
¢. Second Parameter: standard deviation for normal, standard deviation of Inx for lognormd,
shape parameter for gamma, Weibull and beta distributions

digtribution parameters; those results are not shown here.  Uncertainty analysisresults are

available for the variables without origina data.

Table 5-4 shows the summarization of results of fitting a parametric digtribution to the

sampling datafor the mean. Similar analyss results are aso available for the statistics of

standard deviation, distribution parameters, but are not shown here. Theseresultsare

automatically calculated by AuvTool. As previoudy mentioned, the norma digtribution is often
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used to represent the uncertainty in the mean; however, the assumption isonly vdid if the
sampling digtribution is from norma digtribution and/or the sample size is large enough. The use
of bootstrap smulation enables the use of other distribution types to represent the uncertainty in
the mean as shown in Table 5-4. The datidtica test results show that the distribution types
describing the mean for dl variables in the Table 5-4 are good representatives of the
corresponding means. The compact forms of representing mean will be convenient in
propagating the uncertainty from model inputs to model output in other software, such as

SHEDS.

It must be pointed out that the result formats shown above are not the ones that the
SHEDS modd requires. A specid variability and uncertainty analyss result output format for

the EPA SHEDS modd is designed inside AuvTool but not shown here.
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6.0 CONCLUSIONSAND RECOMMENDATIONS

This chapter presents key conclusions for the project and offers recommendations
for future work.

6.1  Conclusons
The objective of this project was to develop a stland-alone software tool that can

conduct satistica andysis of variahility and uncertainty associated with fitting

probability distributions to data sets for use with the SHEDS modeling framework.
Secondary objectives were to develop atool that would be user-friendly, to develop atool
so that it could be used for genera purpose gpplications, and to verify the new software
through extendve testing of its dgorithms.

The project succeeded in meeting the objectives that were set forth at the
beginning of the project. Specifically, a stand-alone software tool was developed that can
conduct statistica analysis of variability and uncertainty associated with fitting
probability distributions to data sets. The new software tool, AuvTodl, is cgpable of
producing output in aformat required by the EPA SHEDS modeling framework. The
new softwareisuser friendly. It includes agraphica user interface. A separate user's
manua was prepared as part of this project and it isincluded as on-line hdp in AuvToadl.
Because the software is modular and was written as a sand-aone program, it can be used
for any gpplicationsin which there is aneed to fit distributions to data and/or to
characterize variability and uncertainty associated with the fitted distribution. The
technical bass of the software is documented in detail in thisreport. Asreportedin
Chapter 4, the software was extensvely tested to verify the technica correctness of the

agorithms and to prove the stability and utility of the program.
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AuvTool wasrigoroudy evauated with respect to the generation of random
numbers, estimation of parameters of digtributions using both MoMM and MLE,
confidence interva's estimated based upon bootstragp smulation, estimation of the K-S
datigtic, and the gtability of bootstrap smulation results. Factors such asvariation in
sample szesand CV were consdered in the evaluation of AuvTool. Overal, AuvTool
was verified to perform caculations correctly, and the results of AuvTool were found to
be robust to different sample sizes and to different CVs. The random sample generation
and parameter estimation of AuvTool is correct for dl cases. AuvTool provides good
edimates of the 95 percent confidence interva of the mean for the norma and lognormal
digtribution in al cases, and performs as expected for other distributions with regard to
asymptotic convergence of the numerica solution to the analytica solution as the sample
sgzeincreases. The K-S goodness of fit test isimplemented correctly and provides
correct resultsin al cases except for the uniform distribution. The bootstrap smulaion
results were found to be stable for an illustrative test case. The technical bass of
AuwvTool is more thoroughly documented than many other software packages, such as
@Risk and Crydta Ball. Because of the lack of documentation of other software, it was
difficult to make meaningful comparisons of results from AuvTool to those of other
programs.

6.2 Recommendations

Asaresult of this project, severd recommendations were developed. These
recommendations pertain to methods for documenting new software, the appropriate uses
of AuvTool, and needs for continued development of AuvTool.

When developing new software that is intended to be used for policy analysis or

policy making purposes, a thorough approach to software development, documentation,
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and testing should be taken, as demondtrated by this project. Specifically, in addition to
developing the program itsdlf, this project resulted in this technica document and a
companion user's guide. Furthermore, the technical document includes documentation of
extensve testing and verification of the software. The software and the documents
should be made publicly avallable to facilitate review of any policy anayses performed
with the aid of the software,

The results of AuvTool were compared to two commercidly available programs
that include a cgpahility for fitting digtributionsto data. The commercidly avalable
programs did not include sufficient documentation to enable meaningful comparisons.
Therefore, arecommendation is that the vendors of such programs should provide more
thorough and complete technical documentation of the definitions of parametric
digtributions and of the parameter estimation methods used.

AuvTool should be used for itsintended purpose, taking into account the
limitations of the software and its technicd basis. AuvTool was designed to fit
parametric probability distributions to data and to characterize uncertainty in key
gtatistics based upon random sampling error. Other sources of uncertainty, such as
measurement error, are not addressed by the current version of AuvTooal.

The user is strongly cautioned to be very careful in using the batch andyss
festure of AuvTool. Asmentioned both in this technical document and in the user's
guide, the batch method for selecting a"best” fitting distribution is based upon only one
criterion and uncriticaly application of this criterion can lead to potentidly incorrect
results. Because the data quality objective of an anadyss differs from one caseto

another, it isnot likely that any one criterion will be adequate for al applications. Itis
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the user's respongbility to review the output from AuvTool to make sure thet the
distributions selected by AuvTool for agiven case are gppropriate to the user's needs.

AuvTool should be continudly reviewed and revised to ensure that it meets the
ongoing needs of key users, such as anadysts working with the SHEDS model and other
user communities. Examples of key areasin which AuvTool should be augmented
indude the fallowing:

- Incorporation of other parametric distributions, as appropriate.

- BEvduation of whether mixed empirica-parametric (MEP) distributions should
beinduded in AuvTool.

- Cagpability to fit mixture distributions to data and to quantify uncertainty in the
gatistics and CDFs of mixture ditributions using bootstrap smulation.

- Cdculation of other statigtics (e.g., Skewness, kurtoss).

- Incorporation of additional methods for assisting the user in choosing
parametric distributions for fitting to data sets (e.g., moment planes,
probability plots, other goodness- of-fit tests).

- Incorporation of other bootstrap Ssmulation methods for characterizing
confidence intervals for gatigtics (e.g., BCa method).

- Cagpahility to handle measurement error in addition to random sampling error.
- Capability to interface directly with other models for purposes of controlling a
probabilistic smulation of variability and uncertainty in modd inputs and
outputs.
The basis of these recommendations is briefly described.

AuwvTool includes alimited set of seven parametric didtributions. There may be
other parametric distributions that the user community has found to be convenient and
that should be added to AuvTooal. Although AuvTool includes capabilities to work with
empiricd distributions and with sdlected parametric distributions, methods for dedling
with "mixed empiricd parametric’ (MEP) distributions should also be considered for
inclusonin AuvTool. These methodstypicdly involve esimating an upper and lower
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tail that extends beyond the minimum and maximum vaues, respectively, of an empirica
distribution.

A key need for probabilistic anadyss in the context of exposure and risk
assessment is to be able to handle mixtures of two or more distributions. For example,
many data sets are based upon observations of two or more subgroups. Such data can be
muiti-modal and would more accurately be described based upon a weighted combination
of two or more parametric distributions (e.g., two lognorma digtributions). The current
version of AuvTool does not support the use of mixture distributions. A capability to fit
mixture distributions to data and to estimate uncertainty in the satistics of mixture
distributions should be included in future versons of AuvTool.

AuwvToal currently supports caculation of point estimates, sampling digtributions,
and confidence intervals for sdected gatistics, including the arithmetic mean, arithmetic
standard deviation, and digtribution parameters. There may be other statistics that would
be useful to the user community. For example, the skewness and kurtos's are measures
of the shape of adistribution.

AuvToal currently includes a limited number of techniques for ng the
goodness-of-fit of a parametric distribution compared to an data set. These techniques
include the K-S test and the A-D test. Other datistical goodness- of-fit tests could be
included as options. In addition, graphica methods for evauating goodness of fit, based
upon probability plots and moment planes, could be incorporated. There are avariety of
probability plotting methods that enable the anadlyst to eva uate different aspects of
goodness-of-fit. Some methods provide more sengitivity with respect to goodness- of-fit

of the tails while others provide more sengtivity with respect to the central portions of
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the digtribution. Moment planes are a graphica technique for comparing the shape of the
empirica digtribution of the data with the shape of possible candidate parametric
distribution. Moment planes can be developed based upon the skewness and kurtoss.

The bootstrgp smulation method used in AuvTooal is the percentile method, which
isversatile. However, there are other bootstrap methods, such as BCa, that may give
more accurate confidence interva estimatesin some cases. Such methods are typicaly
not as versdtile as the percentile methods, but they should be evaluated for incorporation
into future versons of AuvTool.

AuwvToal provides amethod for quantifying uncertainty in the Satistics of a
distribution based upon random sampling error. While random sampling error may often
be a dominate source of uncertainty, it is aso possible that other sources of uncertainty
may be equaly or more important in some cases. For example, measurement errorsin
each individua data vaue may contribute subgtantialy to uncertainty in key statistics or
regarding the fit of a parametric distribution to the data. Methods for dedling with
measurement error as a source of uncertainty should be evauated for possible
incorporation into AuvTool.

Because AuvTool is modular and based upon an object-oriented programming
goproach, it is possble to extend AuvTool asabassfor quantifying variability and
uncertainty in model inputs, propagating variability and uncertainty to model outputs, and
andysis of results. Approaches for extending the capabilities of AuvToal to include an
ability to interface with other modds and to analyze probabiligtic andysis results should

be explored.
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APPENDIX A. GRAPHICAL COMPARISON FOR RANDOM SAMPLE

Cumulative Probability

Cumulative Probability

GENERATION
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n=1000
0.6 -
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Values of Random Variable

Figure A-1. Comparison of Random Samples and Specified Norma Distribution,

mel,s%=1.
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0.8 4 Normal, Mean=1, CV=2
n=1000
0.6 -
0.4 -
0.2 - — —- Specified Distribution
Random Samples
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Values of Random Variable

Figure A-2. Comparison of Random Samples and Specified Norma Distribution,
mel,s%=4.
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Cumulative Probabilit

Cumulative Probabili

Cumulative Probabilit

2. Lognormal Didribution

Values of Random Variable

igure A-5. Comparison of Rand. Samp. and Specified Lognorma Digt., Mink=-

0804, S |nx:1.269.
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Figure A-3. Comparison of Rand. Samp. and Specified Lognormal Dist., Miny=-
0.112, s1x=0.472.
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Figure A-4. Comparison of Rand. Samp. and Specified Lognorma Dist., Minx=-
0347, S|nx:O.833.
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3. Gamma Didribution
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Figure A-6. Comparison of Random Samples and Specified Gamma Didribution,
a=4, b=0.25.
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Figure A-7. Comparison of Random Samples and Specified Gamma Digtribution,
a=1, b=1.
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Figure A-8. Comparison of Random Samples and Specified Gamma Distribution,
a=0.25, b=4.
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4. Weibull Didribution

Cumulative Probability
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Figure A-9. Comparison of Random Samples and Specified Weibull Digt.,
a=2.101, b=1.129.
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Figure A-10. Comparison of Random Samples and Specified Weibull
Didribution, a=1, b=1.
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Figure A-11. Comparison of Random Samples and Specified Welbull Digt.,

a=0.543, b=0.575.

138



5. Beta Digtribution

Cumulative Probabili
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Figure A-12. Comparison of Random Samples and Specified Beta Didtribution,

a=12, b=12.
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Figure A-13. Comparison of Random Samples and Specified Beta Didtribution,
a=15, b=15.
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Figure A-14. Comparison of Random Samples and Specified Beta Digt.,
a=0.281, b=0.281.
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6. Uniform Didtribution
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Figure A-15. Comparison of Random Samples and Specified Uniform Dig., a=-
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Figure A-16. Comparison of Random Samples and Specified Uniform
Didribution, a=-2, b=4.
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Figure A-17. Comparison of Random Samples and Specified Uniform
Didtribution, a=-5, b=7.
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7. Symmetric Triangle Digribution
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Figure A-18. Comparison of Rand. Samp. and Specified Symmitr. Triangle Dit.,

a=1, b=1.225.
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Figure A-19. Comparison of Rand. Samp. and Specified Symmitr. Triangle Digt.,

a=1. b=2.450.
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Figure A-20. Comparison of Rand. Samp. and Specified Symmttr. Triangle Di<t.,
a=1, b=4.899.
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8. Empirica Didribution

Cumulative Probability
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Figure A-21. Comparison of Empirica Digtribution of Randomly Generated Data
and Andyticd CDF of Assumed Population Digtribution for the
Empiricd Didribution
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APPENDIX B: DATA USED IN VERIFICATION TESTS

Table B-1. Data Sets for Normal Distribution for Parameter Estimation and K-S Test

n=10 n=20 n=50

-0.9892 0.2554 -2.7846
-0.4436 0.3347 -2.5341
-0.4265 0.5029 -2.2542
0.1772 0.5282 -1.9784
0.2526 0.5368 -1.6614
0.4170 0.8386 -1.3167
0.5368 0.8763 -1.0314
0.7948 0.9585 -0.9882
0.9033 0.9735 -0.8873
1.1912 1.0184 -0.8530
1.1430 -0.5252

1.1474 -0.4655

1.1664 -0.2425

1.1841 -0.1543

1.2017 0.0552

1.3456 0.0646

1.3495 0.1266

1.7138 0.2434

1.9437 0.2570

2.3228 0.3544

0.5052

0.5060

0.8341

0.8940

0.9776

1.0049

1.0631

1.0735

1.1502

1.5185

1.5718

1.5895

1.6526

1.6654

1.7366

1.8067

1.9102

1.9256

Continued on next page.
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Table B-1. Continued.

2.1029

2.3824

2.3980

3.0385

3.3135

3.6305

3.8550

4.0295

4.3277

4.7749

4.8574

6.2912
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Table B-2. Data Sets of Normal Distribution for Confidence Interva Test

nel, CvV=05 nel, Cv=1 nmel, CvV=2
n=10 n=20 n=50 n=10 n=20 n=50 n=10 n=20 n=50
0.9585 | 0.9585 | 0.9585 | 09170 | 09170 | 09170 | 0.8341 | 0.8341 | 0.8341
0.8763 | 0.8763 | 0.8763 | 0.7526 | 0.7526 | 0.7526 | 0.5052 | 0.5052 | 0.5052
0.5282 | 05282 | 0.5282 | 0.0564 | 0.0564 | 0.0564 | -0.8873 | -0.8873 | -0.8873
1.0184 | 1.0184 | 1.0184 | 1.0368 | 1.0368 | 1.0368 | 1.0735 | 1.0735 | 1.0735
1.3456 | 1.3456 | 1.3456 | 1.6912 | 1.6912 | 1.6912 | 2.3824 | 2.3824 | 2.3824
11474 | 11474 | 1.1474 | 1.2948 | 1.2948 | 1.2948 | 1.5895 | 1.5895 | 1.5895
1.2017 | 1.2017 | 1.2017 | 1.4033 | 1.4033 | 1.4033 | 1.8067 | 1.8067 | 1.8067
0.8386 | 0.8386 | 0.8386 | 0.6772 | 0.6772 | 0.6772 | 0.3544 | 0.3544 | 0.3544
0.5368 | 0.5368 | 0.5368 | 0.0735 | 0.0735 | 0.0735 | -0.8530 | -0.8530 | -0.8530
0.2554 | 0.2554 | 0.2554 | -0.4892 | -0.4892 | -0.4892 | -1.9784 | -1.9784 | -1.9784
1.1841 | 1.1841 1.3683 | 1.3683 1.7366 | 1.7366
0.5029 | 0.5029 0.0059 | 0.0059 -0.9882 | -0.9882
0.3347 | 0.3347 -0.3307 | -0.3307 -1.6614 | -1.6614
0.9735 | 0.9735 0.9470 | 0.9470 0.8940 | 0.8940
2.3228 | 2.3228 3.6456 | 3.6456 6.2912 | 6.2912
1.1664 | 1.1664 1.3327 | 1.3327 1.6654 | 1.6654
1.3495 | 1.3495 1.6990 | 1.6990 2.3980 | 2.3980
1.1430 | 1.1430 1.2859 | 1.2859 15718 | 15718
1.7138 | 1.7138 24275 | 2.4275 3.8550 | 3.8550
1.9437 | 1.9437 2.8874 | 2.8874 47749 | 4.7749
0.8109 0.6217 0.2434
0.6894 0.3788 -0.2425
1.2276 1.4551 1.9102
0.6187 0.2374 -0.5252
1.8319 2.6639 4.3277
1.1632 1.3263 1.6526
1.7574 2.5148 4.0295
1.6576 2.3152 3.6305
0.7817 0.5633 0.1266
1.2757 1.5514 2.1029
0.8765 0.7530 0.5060
1.0012 1.0024 1.0049
1.9644 2.9287 4.8574
1.0376 1.0751 1.1502
1.2314 1.4628 1.9256
0.4922 -0.0157 -1.0314
1.0158 1.0315 1.0631
15784 2.1567 3.3135
0.1165 -0.7671 -2.5341
Continued on next page.
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Table B-2. Continued.

1.5096 2.0193 3.0385
0.9944 0.9888 0.9776
0.7638 0.5276 0.0552
0.8143 0.6285 0.2570
1.1296 1.2593 1.5185
0.0538 -0.8923 -2.7846
0.7662 0.5323 0.0646
0.1864 -0.6271 -2.2542
0.6336 0.2672 -0.4655
0.7114 0.4229 -0.1543
0.4208 -0.1584 -1.3167
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Table B-3. Data Sets for Lognorma Didtribution for Parameter Estimation and K-S Test

n=10 n=20 n=50

0.8601 0.6599 0.4025
0.7958 0.5755 0.3268
0.5727 0.3223 0.1351
0.9101 0.7291 0.4686
1.2398 1.2572 1.0748
1.0280 0.9038 0.6500
1.0822 0.9893 0.7460
0.7679 0.5405 0.2969
0.5774 0.3270 0.1381
0.4426 0.2047 0.0676
0.9608 0.7135

0.3091 0.1267

0.2335 0.0827

0.6766 0.4181

6.3983 12.8273

0.9328 0.6821

1.2654 1.0855

0.8971 0.6427

2.3208 2.7354

3.4035 4.9025

0.2768

0.2033

0.7967

0.1700

3.6918

0.6765

3.0556

2.3723

0.2570

0.9002

0.3269

0.4486

5.1661

0.4919

0.8044

0.1233

0.4655

1.9402

0.0475

1.6296

Continued on next page.
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Table B-3. Continued.

0.4409

0.2456

0.2792

0.6214

0.0405

0.2471

0.0568

0.1765

0.2150

0.1029
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Table B-4. Data Sets of Lognorma Digtribution for Confidence Interva Test

nel, CvV=05 nel, Cv=1 nmel, CvV=2
n=10 n=20 n=50 n=10 n=20 n=50 n=10 n=20 n=50
0.8601 | 0.8601 | 0.8601 | 0.6599 | 0.6599 | 0.6599 | 0.4025 | 0.4025 | 0.4025
0.7958 | 0.7958 | 0.7958 | 0.5755 | 0.5755 | 0.5755 | 0.3268 | 0.3268 | 0.3268
0.5727 | 05727 | 05727 | 0.3223 | 0.3223 | 0.3223 | 0.1351 | 0.1351 | 0.1351
0.9101 | 09101 | 09101 | 0.7291 | 0.7291 | 0.7291 | 0.4686 | 0.4686 | 0.4686
1.2398 | 1.2398 | 1.2398 | 1.2572 | 1.2572 | 1.2572 | 1.0748 | 1.0748 | 1.0748
1.0280 | 1.0280 | 1.0280 | 0.9038 | 0.9038 | 0.9038 | 0.6500 | 0.6500 | 0.6500
1.0822 | 1.0822 | 1.0822 | 0.9893 | 0.9893 | 0.9893 | 0.7460 | 0.7460 | 0.7460
0.7679 | 0.7679 | 0.7679 | 0.5405 | 0.5405 | 0.5405 | 0.2969 | 0.2969 | 0.2969
0.5774 | 05774 | 05774 | 0.3270 | 0.3270 | 0.3270 | 0.1381 | 0.1381 | 0.1381
0.4426 | 0.4426 | 0.4426 | 0.2047 | 0.2047 | 0.2047 | 0.0676 | 0.0676 | 0.0676
1.0644 | 1.0644 0.9608 | 0.9608 0.7135 | 0.7135
0.5592 | 0.5592 0.3091 | 0.3091 0.1267 | 0.1267
0.4770 | 0.4770 0.2335 | 0.2335 0.0827 | 0.0827
0.8723 | 0.8723 0.6766 | 0.6766 0.4181 | 0.4181
3.1210 | 3.1210 6.3983 | 6.3983 12.8273 | 12.8273
1.0467 | 1.0467 0.9328 | 0.9328 0.6821 | 0.6821
1.2444 | 1.2444 1.2654 | 1.2654 1.0855 | 1.0855
1.0238 | 1.0238 0.8971 | 0.8971 0.6427 | 0.6427
1.7555 | 1.7555 2.3208 | 2.3208 27354 | 2734
2.1815 | 2.1815 3.4035 | 3.4035 4.9025 | 4.9025
0.7481 0.5161 0.2768
0.6670 0.4216 0.2033
1.1090 1.0329 0.7967
0.6239 0.3748 0.1700
1.9629 2.8255 3.6918
1.0435 0.9278 0.6765
1.8294 2.4956 3.0556
1.6648 2.1137 2.3723
0.7277 0.4916 0.2570
1.1606 1.1191 0.9002
0.7959 0.5757 0.3269
0.8955 0.7085 0.4486
2.2245 3.5225 5.1661
0.9267 0.7527 0.4919
1.1130 1.0395 0.8044
0.5536 0.3036 0.1233
0.9078 0.7259 0.4655
1.5447 1.8524 1.9402
0.3882 0.1624 0.0475
Continued on next page.
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Table B-4. Continued.

1.4476 1.6521 1.6296
0.8897 0.7005 0.4409
0.7155 0.4772 0.2456
0.7505 0.5190 0.2792
1.0110 0.8775 0.6214
0.3659 0.1463 0.0405
0.7171 0.4791 0.2471
0.4147 0.1825 0.0568
0.6327 0.3842 0.1765
0.6810 0.4373 0.2150
0.5175 0.2696 0.1029
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Table B-5. Data Sets for Beta, Uniform and Symmetric Triangle Digtribution for
Parameter Estimation and K-S Test

n=10 n=20 n=50

0.666686 0.056167 0.479767
0.520708 0.204888 0.847666

0.084358 0.416095 0.1422
0.688581 0.681037 0.75929
0.765656 0.674789 0.202192
0.719637 0.314731 0.940327
0.761868 0.187021 0.161397
0.518099 0.942398 0.291832
0.465871 0.50316 0.290142
0.527589 0.74777 0.69741
0.465847 0.795787
0.293581 0.640029
0.473296 0.932238
0.448283 0.717781
0.797148 0.540517
0.005394 0.633189
0.182474 0.762339
0.288185 0.142484
0.475007 0.549227
0.255269 0.170821
0.790685
0.528421
0.834544
0.268829
0.384195
0.391376
0.912772
0.543857
0.434066

0.16911
0.037326
0.788454
0.615929

0.24517
0.027483
0.119344
0.289228
0.715284
0.015397

Continued on next page.
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Table B-5. Continued.

0.422466

0.24964

0.925673

0.241992

0.811826

0.158428

0.129122

0.316524

0.788725

0.281392

0.758638
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Table B-6. Data Sets of Beta Didtribution for Confidence Interva Test

m=0.5, CV=0.2, n=50 m=0.5, CV=0.5, n=50 m=0.5, CV=0.8, n=50
0.024467 0.002633 1.00E-10
0.036959 0.002684 1.00E-10
0.051817 0.004858 1.00E-10
0.051899 0.004995 1.00E-10
0.054774 0.006383 1.00E-10
0.055357 0.007085 1.00E-10
0.055589 0.007203 8E-07
0.055947 0.011039 1.6E-06
0.057648 0.012053 0.000002
0.059847 0.0219 2.6E-06
0.06246 0.022339 4.8E-06
0.064651 0.024703 1.06E-05
0.065029 0.026111 1.71E-05
0.065164 0.026281 2.27E-05
0.069831 0.026447 4.69E-05
0.071273 0.034833 0.00013
0.074798 0.035238 0.000141
0.077348 0.035755 0.000158
0.077413 0.035855 0.000168
0.077604 0.039402 0.000187
0.07854 0.04344 0.000221
0.086017 0.045545 0.00026
0.088675 0.054316 0.000354
0.089772 0.061863 0.000884
0.089893 0.063722 0.001193
0.092192 0.07151 0.001745
0.097064 0.072251 0.001804
0.09716 0.077617 0.002203
0.098054 0.079543 0.002609
0.102059 0.081759 0.003233
0.104372 0.085027 0.003602
0.108084 0.089248 0.003891
0.110239 0.0996 0.005033
0.111961 0.113736 0.012219
0.116976 0.116015 0.012529
0.117631 0.116034 0.015099
0.118047 0.128622 0.015686
0.119931 0.140123 0.024592
0.122798 0.148648 0.028731
0.125703 0.166565 0.039662
Continued on next page.
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Table B-6. Continued.

0.138469 0.187798 0.050859
0.151853 0.203531 0.053434
0.15532 0.242457 0.080479
0.166411 0.245294 0.152349
0.167765 0.263492 0.193202
0.17457 0.323808 0.206504
0.178525 0.324956 0.208986
0.196136 0.338322 0.2738
0.197207 0.403492 0.406509
0.25337 0.407709 0.412991

154




Table B-7. Data Sets of Uniform Digtribution for Confidence Interva Test

m=1, Cv=0.5, n=50 m=1, CV=1, n=50 m=1, CV=2, n=50
-0.32498 1.221523 6.07E+00
0.30388 0.735288 6.39E+00
0.583567 -1.25886 8.96E-01
2.225166 3.913587 -4.49+00
2.46808 -1.3389 -1.27E+00
1.529386 3.709192 -3.13E+00
0.519346 -1.61759 -0.1291269
0.355154 -0.18521 -2.7758997
2.343876 0.195226 3.6908817
-0.20759 -0.63884 5.8900257
0.068129 -1.70059 6.1600923
2.22944 3.43418 4.2930695
1.01877 3.265578 0.3838651
0.194764 -0.60356 0.3473017
1.489041 -0.60929 -0.4435245
1.817975 -0.57964 -2.696858
1.510918 2.498651 -2.0761322
-0.19813 0.939452 0.7750195
1.583366 2.895536 -4.6393945
2.100992 3.097996 3.3696667
0.800552 2.275948 -4.2462408
0.131175 1.671725 0.9784055
0.642738 2.936652 -1.3917915
1.58287 1.144557 4.7880763
0.142016 -0.4461 -2.6372971
1.05426 3.134434 -0.6632113
1.109989 3.011648 2.2567119
1.570975 2.699634 3.3643972
0.714458 -1.82872 0.2817935
0.510443 1.839341 2.4258328
0.183517 1.56536 6.6566476
0.650184 3.94612 3.4202417
-0.04149 2.158811 -0.2463783
2.358758 1.141405 -1.4996307
0.889038 1.860129 -4.3053673
2.346991 -1.82247 -4.7690753
1.173009 2.3823 -1.8921308
1.074553 -1.09907 3.1037538
2.440008 -0.09205 -1.4702646
0.771399 2.246039 -1.8078144
Continued on next page.
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Table B-7. Continued.

2.190604 3.630662 2.3860321
1.515629 3.77217 0.7263638
0.119436 1.044941 0.0872605
2.363081 2.912202 1.6929773
1.830178 2.41365 -2.0452632
-0.14426 2.069731 0.2477471
1.263888 -0.35185 1.2236824
1.324095 0.846339 -1.8524161
2.227001 2.679161 4.6425357

2.0533 -0.16315 4.0404926
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Table B-8. Data Sets of Symmetric Triangle Digtribution for Confidence Interva Test

n¥1, CV=0.5, n=50

n¥1, CV=1, n=50

nF1, CV=2, n=50

0.193447 1.225817 -1.10E+00
0.67178 1.93194 1.62E+00
0.816162 1.181863 1.01E+00
1.700645 0.295435 2.21E+00
2.046302 0.878902 -3.63E-01
1.239597 1.149237 4.27E+00
0.784837 1.358888 0.4972708
0.699938 0.989834 0.2721264
1.829793 0.813274 1.9241575
0.315865 -1.18277 -1.152917
0.528901 0.654205 0.5490978
1.704738 -0.67189 -2.056923
1.007688 1.128859 2.2209788
0.608698 2.720267 4.0099247
1.219326 1.268958 0.999532

1.39898 0.867484 1.1666594
1.230267 0.966704 -0.987974
0.324538 -0.58699 3.041046

1.267391 0.774517 1.5613391
1.593197 0.379216 0.3800469
0.915655 0.577578 3.7338996
0.569631 0.439358 0.3809431
0.844212 1.178303 4.433354

1.267131 1.946709 -0.865622
0.576426 0.98284 0.5462138
1.02236 0.87753 3.1453094
1.045767 0.512284 0.9832992
1.26094 2.249964 45257123
0.877254 -0.11401 3.8048765
0.780417 2.156753 1.7004283
0.601923 2.177259 -1.360886
0.84769 0.507348 -0.16514

0.452278 0.764985 1.6787819
1.849099 1.168802 0.6397555
0.95382 1.813824 1.7637404
1.833754 1.848142 -1.15271

1.072809 0.905758 1.2388257
1.03083 0.157541 0.8716614
1.980016 -0.09441 2.0387728
0.902798 0.584578 5.4352119

Continued on next page.
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Table B-8. Continued.

1.66865 0.735153 1.423675
1.232639 0.717552 0.5396904
0.562207 1.0998 4.016813
1.854897 0.822438 0.9173806
1.406403 0.951848 2.9746332
0.371561 1.101905 0.5656432
1.112963 0.905231 0.9745913
1.140383 2.466092 -1.047837
1.702398 1.113093 2.5144999
1.556505 -0.51151 2.6021935
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Table B-9. Data Sets for Gamma and Welbull Digributions for Parameter Estimation and
K-STest

n=10 n=20 n=50
0.0512 0.4854 0.5399
1.4647 0.2333 0.8592
0.4995 0.0814 0.6626
0.7216 0.3035 1.0968
0.1151 1.7358 0.8372
0.2717 0.9021 1.4874
0.7842 0.0667 0.5451
3.9898 0.0868 0.274
0.1967 0.8909 0.6352
0.8103 0.1124 0.4455
2.8492 1.5651
1.0417 0.9681
0.2068 0.2442
4.6191 0.3844
1.9741 0.7742
1.5957 0.5659
1.6158 0.2304
0.5045 2.8271
1.3013 0.5061
2.9904
0.8786
1.1874
0.1343
4.1991

0.264
0.0296

0.01
0.2372

0.824
0.6965

1.542
0.4408
1.1393
0.0407
0.3193
0.8868

0.295

1.317
0.8212
0.0689

Continued on next page.
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Table B-9. Continued.

0.3808

1.5485

0.1753

0.464

2.0116

1.5744

0.4989

0.4622

0.993

0.5531
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Table B-10. Data Sets of Gamma Didtribution for Confidence Interva Test for Gamma
and Empiricd Digtributions

n¥1l, CV=0.5, n=50

mel, CV=1, n=50%

n¥l, CV=2, n=50

0.3495 0.0601 0.1240
0.8061 0.3119 0.4576
0.7780 0.4481 1.9215
2.9950 2.3902 0.0019
0.5772 4.5431 0.0990
1.0095 1.1284 0.0002
1.2915 0.4152 0.0042
1.3076 0.3355 0.9951
1.3639 2.9557 0.0170
0.9038 0.1026 5.2902
0.8323 0.2100 0.6898
0.6116 2.4059 0.7764
1.0571 0.7057 0.2163
0.8644 0.2634 3.7640
0.6304 1.0877 7.0598
0.5235 1.4813 0.0002
0.9455 1.1096 0.1302
1.0915 0.1061 0.2326
0.6012 1.1857 0.5471
1.6019 2.0174 1.6067
1.1438 0.5683 7.8384
1.0575 0.2362 0.1253
0.4541 0.4795 0.0730
0.3622 1.1851 0.0087
0.8123 0.2408 0.0393
2.1055 0.7300 0.3317
0.6358 0.7693 0.0081
1.5140 1.1722 0.1039
1.4096 0.5189 0.1621
1.7865 0.4107 0.0583
0.6721 0.2586 1.1142
0.2636 0.4835 0.1813
1.1551 0.1659 0.0799
1.3607 3.0559 0.7581
1.2498 0.6218 0.0305
1.4574 2.9759 0.0000°
0.7495 0.8157 0.0379
1.0114 0.7441 8.4097
1.4722 3.9121 2.5678
0.6928 0.5513 0.0000°
Continued on next page.
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Table B-10. Continued.

1.6130 2.2717 0.0000°
0.9870 1.1144 0.4993
0.7406 0.2313 0.0535
0.8659 3.0870 0.0099
1.4405 1.4994 0.7027
0.9251 0.1262 0.0002
0.8307 0.8866 0.0008
0.6517 0.9366 0.0078
0.2690 2.3969 2.0831
0.3600 1.9045 0.0138

& This column of random numbers was aso used for empirica distribution test

b 1078 instead of 0 was used to input into AuvTool.
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Table B-11. Data Sets of Weibull Digtribution for Confidence Interva Test

n=1, CV=0.5, n=50 n¥l, CV=1, n=50% nel, CV=2, n=50
1.9039 0.3153 5.2990
0.5978 0.0127 2.6816
1.0927 0.5815 2.1355
0.9301 1.2358 0.2639
1.6499 1.1584 0.0378
1.3412 1.4805 0.9145
0.8921 1.0239 2.2486
0.1698 0.3815 2.5698
1.4625 1.5667 0.1570
0.8771 0.2888 4.4419
1.1049 2.2432 3.2990
1.3993 0.5836 0.2601
1.7622 0.2578 1.4947
1.2979 0.1610 2.9431
0.5172 0.3411 0.9560
0.8274 0.1958 0.6328
1.8242 0.5276 0.9334
1.7421 0.4313 4.3881
0.8332 0.6515 0.8599
1.6576 1.0983 0.3747
0.2951 0.0667 1.7927
0.7599 0.1024 3.1135
1.4442 0.2091 2.0364
0.1256 3.4456 0.8604
0.4571 1.5845 3.0833
0.557 0.1596 1.4497
0.5511 0.2757 1.3807
1.0884 0.1158 0.8723
0.6542 0.4753 1.9223
0.5512 1.1204 2.2647
0.1549 0.0292 29721
1.3131 2.5217 2.0243
0.8776 1.0073 3.6727
1.8067 0.8420 0.1433
0.9044 0.3588 1.6671
0.8439 0.1500 0.1541
1.5217 0.0749 1.3050
0.9813 1.1035 1.4243
0.5569 0.9749 0.0663
1.1891 1.4446 1.8357
1.5017 1.7104 0.2947
Continued on next page.

163



Table B-11. Continued.

0.1748 2.4092 0.9286
1.2034 1.2038 3.1467
0.794 0.2840 0.1393
1.4865 0.1130 0.6214
0.952 0.7812 4.1090
1.2488 1.7273 1.1997
0.8569 0.1702 1.1323
0.6973 3.3622 0.2623
0.5376 3.0228 0.4174

Table B-12. Random Samples Used for Reliability Test

0.4854 0.2303 0.0814 0.3035 1.7358
0.9021 0.0667 0.0868 0.8909 0.1124
2.8492 1.0417 0.2068 4.6191 1.9741
1.5957 1.6158 0.5045 1.3013 1.6154
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